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Let’s begin by taking a look back...



Interpretation Issues...
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Interpretation Issues

* Do we know what we are looking for?



Let (recent) history be our guide...

* Before the Human Genome Project (2003)
— Human genome ~ 100,000 — 120,000 genes

* Before the ENCODE Project (2007)

— Vast majority of genome is ‘Junk’ (“Junk DNA”)

— Genes are sufficient to understanding biology
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Gene-Centric View
Post ENCODE Project

“I once wrote a book called The Language of the Genes, but now biologists
are beginning to face up to the uncomfortable truth that they have only been
looking at the nouns in life's lexicon — the crudest and most basic elements
of any tongue. Now we are reading the spaces in between — verbs, adverbs,
adjectives, pronouns and all the rest, and they are complicated indeed.”

Dr. Steve Jones, University College London (2007)



Genetic Nostradamus?

“HGP scientists thought, and still do, that they could find a small
number of genes that were key to these diseases. However, this
strategy is flawed, because for most multifactorial diseases
affected by many genes those genes have small, not large
effects. And genes with small effects are very hard to find.”

Dr. Richard Strohman, UC Berkeley (2001)



Where are we?
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What did we hope to uncover with
GWAS?

e Common variants underlying common disease

 We wanted more “APOEs”
— e4 allele ~ 10-15% frequency
— Effect size ~ 3-4 (odds ratio) for AD



What did we, in fact, uncover?



What did we find?

Small effects
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Has GWAS Been Successful for
Complex Disease?

* |t Depends...

* But more importantly, it depends on what you
define as success



Defining Success for GWAS

* Gain insights into biology, population genetics,
gene-flow, evolution
— Generally, a success but...

* [t was a really expensive experiment

— Good for advancing basic biological knowledge
— Minimal public health impact on its own
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Single Polymorphism

* The original GWAS approach

 Some (/limited) success
— Novel targets have been identified
— However...

* Minimal public health impact
e Can’t explain more than 5-10% of heritability
* Missing Heritability



2009

nature

REVIEWS

Vol 461|8 October 2009|doi:10.1038/nature08494

Finding the missing heritability of complex
diseases

Teri A. Manolio', Francis S. Collins?, Nancy J. Cox’, David B. Goldstein®, Lucia A. Hindorff>, David J. Hunter®,
Mark I. McCarthy’, Erin M. Ramos®, Lon R. Cardon®, Aravinda Chakravarti®, Judy H. Cho'’, Alan E. Guttmacher’,
Augustine Kong'!, Leonid Kruglyak'?, Elaine Mardis'’, Charles N. Rotimi'*, Montgomery Slatkin'°, David Valle®,
Alice S. Whittemore'®, Michael Boehnke'’, Andrew G. Clark'®, Evan E. Eichler'?, Greg Gibson®’, Jonathan L. Haines*'

Trudy F. C. Mackay??, Steven A. McCarroll*® & Peter M. Visscher?*



Missing Heritability

Variance Explained (h?)

Trait/Disease Family Studies SNP by SNP
Height 0.80 0.10
Body Mass Index 0.40-0.60 0.05-0.10
Type 2 diabetes 0.30-0.60 0.05-0.10
HDL cholesterol 0.50 0.10
Breast cancer 0.30 0.08
Multiple sclerosis 0.30-0.80 0.10
Schizophrenia 0.70-0.80 0.01
Bipolar disorder 0.60-0.70 0.02

Adapted from: Visscher et al. (2012), AJHG.



Searching for the Missing Heritability



Why are GWAS signals so small?
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Allelic Spectrum of Disease
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Allelic Spectrum of Disease
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Where is this heritability?



Is the heritability really there?
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Is the heritability really there?
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2010

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang', Beben Benyamin', Brian P McEvoy!, Scott Gordon', Anjali K Henders', Dale R Nyholt,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery', Michael E Goddard® &
Peter M Visscher!



Genome-wide Complex Trait Analysis
(GCTA)

e What does it do?

— Provides an estimate of heritability using genome-
wide data from unrelated samples

* How is this different than a family/twin study?

— Disentangles issues related to the family
environment inherent in twin studies

* Limitation
— Need fairly large sample sizes (> 5000) to
adequately power the approach



Finding Heritability

Variance Explained (h?)

Trait/Disease Family Studies SNP by SNP All SNPs
Height 0.80 0.10 0.50
Body Mass Index 0.40-0.60 0.05-0.10 0.20
Type 2 diabetes 0.30-0.60 0.05-0.10

HDL cholesterol 0.50 0.10

Breast cancer 0.30 0.08

Multiple sclerosis 0.30-0.80 0.10

Schizophrenia 0.70-0.80 0.01 0.30
Bipolar disorder 0.60-0.70 0.02 0.40

Adapted from: Visscher et al. (2012), AJHG.



Finding Heritability

* |t appears to be there, just very difficult to find

* The question then becomes...
— How do we find it?



Do we need to find it at all?

e Research groups focused exclusively on
finding the missing heritability

* Research groups abandoning genetic studies

e Research groups approaching genetic factors
as one of many components underlying a
phenotype/disease



Limitations of GCTA as a solution to the missing
heritability problem

Siddharth Krishna Kumar™', Marcus W. Feldman®, David H. Rehkopf®, and Shripad Tuljapurkar®
“Department of Biology, Stanford University, Stanford, CA 94305-5020; and “School of Medicine, Stanford University, Stanford, CA 94305-5020

Edited by Mary-Claire King, University of Washington, Seattle, WA, and approved November 20, 2015 (received for review October 9, 2015)

Bottom line: GCTA performs quite poorly in stratified samples!



Also in 2009...

nature Vol 460|6 August 2009 doi:10.1038/nature08185

LET TERS

Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

The International Schizophrenia Consortium*
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"Post-GWAS Era”

Genetic Heritability Polygenic Risk Scores



"Post-GWAS Era”

Genetic Heritability Polygenic Risk Scores

Global Samples!



Polygenic Risk Scores



Polygenic Risk Scores

* Overview
* How are they used?
* How are they constructed?



Polygenic
Scores (PGS)
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What is a PGS?

* Sum of the copies of an allele (usually the
“risk” allele) within an individual

e Often a weighted sum of alleles weighted by
parameter estimates (regression) from a
previous study



Different forms of the PGS

* Top hits
— Only SNPs that reach some (stringent) level of
statistical significance (1e-8)
* Genome-wide

— All SNPs or all below some nominal level of
significance (0.5)

— All SNPs available



Where does the data come from?

* Generally, large consortia will generate the
association results that ultimately become a
polygenic score



GIANT Consortium

nature |
genetlcs

Association analyses of 249,796 individuals reveal
18 new loci associated with body mass index

Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci
for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals
with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci
and identified 18 new loci associated with body mass index (P < 5 x 107Y), one of which includes a copy number variant near
GPRCS5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of
these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into
human body weight regulation.



Psychiatric outcomes

Psychiatric Genomics Consortium

Home Results Data Sharing Scientific Plan For Investigators Documents PsychChip Downloads Worldwide

StatGen
#  Results
RESULTS Results
Results to date
ADHD PGC Results to Date
. . The PGC has completed mega-analyses for five psychiatric disorders: ADHD, autism, bipolar disorder, major
Bipolar disorder depressive disorder, and schizophrenia. We have also done the initial “cross-disorder” analysis to look for

Cross-disorder genetic variants that predispose to multiple disorders.



Educational Attainment

GWAS of 126,559 Individuals
Identifies Genetic Variants Associated

with Educational Attainment

A rs9320913

All authors with their affiliations appear at the end of this paper.
U0 1 R0 0 ) S | 0 S ||| S -




Accessing the data

e Quite accessible
— Most results are available online to download!

* GIANT Consortium



How are PGS being used?



Characterizing an outcome
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Polygenic Risk, Rapid Childhood Growth, and the
Development of Obesity
Evidence From a 4-Decade Longitudinal Study

Daniel W. Belsky, PhD; Terrie E. Moffitt, PhD; Renate Houts, PhD; Gary G. Bennett, PhD; Andrea K. Biddle, PhD;
James A. Blumenthal, PhD; James P. Evans, MD, PhD; HonalLee Harrington, BA; Karen Sugden, PhD; Benjamin
Williams, BS; Richie Poulton, PhD; Avshalom Caspi, PhD

[+] Author Affiliations
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Sugar-Sweetened Beverages and Genetic Risk of Obesity

Qibin Qi, Ph.D., Audrey Y. Chu, Ph.D., Jae H. Kang, Sc.D., Majken K. Jensen, Ph.D., Gary C.
Curhan, M.D., Sc.D., Louis R. Pasquale, M.D., Paul M. Ridker, M.D., M.P.H., David J. Hunter,
M.B., B.S., Sc.D., Walter C. Willett, M.D., Dr.P.H., Eric B. Rimm, Sc.D., Daniel |. Chasman,
Ph.D., Frank B. Hu, M.D., Ph.D., and Lu Qi, M.D., Ph.D.
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Figure 2. Difference in BMI Associated with One Serving of a Sugar-Sweetened Beverage per
Day, According to the Quartile of the Genetic-Predisposition Score



Improving prediction



Alzheimer’s Disease
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ldentifying shared vulnerability



ASSOCIATION STUDIES ARTICLE

Chronic gastroesophageal reflux disease shares genetic
background with esophageal adenocarcinoma and
Barrett’s esophagus

Puya Gharahkhani'*, Joyce Tung?, David Hinds?3, Aniket Mishral:4, Barrett’s
and Esophageal Adenocarcinoma Consortium (BEACON),

Thomas L. Vaughan?®, David C. Whiteman? and Stuart MacGregor?,

on behalf of the BEACON study investigators
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Genetic liability for schizophrenia predicts risk of immune disorders
Sven Stringer **, René S. Kahn ®, Lot D. de Witte ®, Roel A. Ophoff *<, Eske M. Derks *

* Department of Psychiatry, Amsterdam Medical Center, Amsterdam, The Netherlands
" Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
© University California Los Angeles, Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
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Constructing a PGS



Some issues to consider

e Additive Assumptions
e Strand Ambiguity
 Weights

* LD Considerations



Additive Assumptions

* Polygenic scores are constructed additively
— Sum of the count of alleles over many SNPs

* However, entirely reasonable to consider
other models if they are established

— Dominant coding, recessive coding on a SNP-by-
SNP basis



Strand Ambiguity



Strand Orientation

e Strand unambiguous
— A/G alleles -> T/C alleles

e Strand ambiguous
— A/T and C/G



Strand Reporting

Probe/Target
— Generically as A/B
— Illumina/Affymetrix
Plus (+) / Minus (-)
— 5’ end at the tip of the short arm = plus
— 1000 genomes, HapMap
FWD / REV
— Based upon submitted flanking DNA sequence
— dbSNP (NCBI)
TOP/BOT

— Based upon flanking sequences
— [llumina



Strand issues

* |[n a “top hits” PGS, you can examine SNP-by-
SNP to determine the correct strand

— Authoritative info hard to come by

— Allele frequencies have to align

* |n a full genome-wide PGS, much more
difficult
— People tend to discard a lot of ambiguous SNPs to
simplify the issue



Weights



Weights

 Each SNP weighted by the magnitude of its
estimated effect.

— For continuous traits : the estimated regression
coefficient ('beta’)

— For dichotomous traits : log(OR)

* Pay attention to the direction of the effect!

— Negative effect estimate
e Alternative allele = “risk” allele"



GIANT Consortium Data



LD Considerations



LD Considerations

* Too many variants in LD could lead to
overemphasis of that region in the PGS
* |nstead of LD pruning, LD clumping:

— Select variants in LD blocks that are most highly
associated with outcome



Hot off the press...

Am J Hum Genet. 2015 Oct 1;97(4):576-92. doi: 10.1016/.ajhg.2015.09.001.

Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores.

Vilhjdlmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S, Genovese G, Loh PR, Bhatia G, Do R, Hayeck T, Won HH; Schizophrenia Working Group
of the Psychiatric Genomics Consortium; Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) study, Kathiresan S, Pato M, Pato C,
Tamimi R, Stahl E, Zaitlen N, Pasaniuc B, Belbin G, Kenny EE, Schierup MH, De Jager P, Patsopoulos NA, McCarroll S, Daly M, Purcell S, Chasman D, Neale B,
Goddard M, Visscher PM, Kraft P, Patterson N, Price AL; Discovery Biology and Risk of Inherited Variants in Breast Cancer DRIVE study.

@ Collaborators (368)

Abstract

Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase.
The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a p value threshold to
association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean
effect size of each marker by using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that
LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R(2) increased from
20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in
accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advantage of LDpred over
existing methods will grow as sample sizes increase.

Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.



Simple Example
SNP_____|RiskAllele | Weight

1 A 0.06
2 A 0.07
3 A 0.13
4 C 0.22



Simple Example
SNP_____|RiskAllele | Weight

1 A 0.06
2 A 0.07
3 A 0.13
4 C 0.22

AG(1) AA(2) GG(0) CT(1) 4 0.55
2 GG(0) AG(l) AG(1) TT(0) 2 0.20
3 AA(2) AA(2) AA(2) CC(2) 6 0.96



Overall limitations

* Polygenic Scores only capture GWAS variants
— Common variants

— Relatively constant prediction across
environments

* Conservative method for testing GxE
— Need to establish PGS within environments

* Ethnic homogeneity

— Most (if not all) scores derive from predominantly
European samples



Polygenic Risk Predicts Obesity in Both White and Black
Young Adults

Benjamin W, Domingue’, Daniel W. Belsky®, Kathleen Mullan Harris’, Andrew Smolen®,

Matthew B. McQueen®, Jason D. Boardman'*

1 Institute of Behavioral Sclence, University of Colorado Boulder, Boulder, CO, United States of America 2 Center for the Study of Aging and Human Development, Duke
University Medical Center, Durham, NC, United States of America, 3 Socology Department and the Caroling Population Center, University of North Carolinag at Chapel Hil,
Chapel HIlL NC, United States of America, 4 Institute for Behavioral Genetics, Univensity of Colorado Boulder, Boulder, CO, United States of America, S Department of
Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America



Polygenic Scores

* European PGS
— Based upon 32 SNPs in Speliotes et al

e African-American PGS
— Based upon 8 SNPs in Monda et al



Table 3. Characteristics of white and black young adults in the Add Health Sibling Pairs sample.

Whites (N=918) Blacks (N=677) p-value for difference
Mean sD Mean SD

% Male 0.48 0.50 0.46 0.50 0.44

BMI-Wave 3 25.78 5.80 2639 6.32 0.07

BMI-Wave 4 27.86 6.60 29.34 744 0.00

BMI Change 210 393 269 3.99 0.01

Waist/Height-Wave 4 0.57 0.0 0.58 on 0.15

% Obese-Wave 3 0.22 0.42 0.26 0.44 013

% Obese-Wave 4 033 0.47 0.40 0.49 0.01

Note: Data are for the Sibling Pairs of the National Longitudinal Study of Adolescent Health [17).

doi:10.1371/journal.pone.0101596,1003



Table 4. Genetic associations with body-mass index and obesity in white and black young adults in the Add Health Sibling Pairs
sample estimated using the genetic risk score for Europeans (GRS-E).

Obesity Phenotype White Sample Black Sample p-value for difference
Unweighted B [95% CI]
BMI-Wave 3 0.16%** [0.09, 0.23] 0.14%* [0.06, 0.23] 0.96
BMI-Wave 4 0.17%% [0.10, 0.24] 0.13** [0.04, 0.21] 0.76
Change 0.06* [0.01, 0.10] 0.01 [—0.04, 0.05] 023
OR [95% Cl]
Obesity-Wave 3 1.42%% [1.14, 1.78] 1.19 [0.96, 1.48] 0.38
Obesity-Wave 4 SR [1.30, 1.83] 1.19 [0.98, 1.45] 0.05
Change 1.43%% [1.14, 1.79] 1.09 [0.83, 1.45] 0.12
Weighted B [95% CI]
BMI-Wave 3 0.16%** [0.09, 0.23] 0.16%** [0.07, 0.24] 0.83
BMI-Wave 4 0.18%** [0.10, 0.25] 0.14%% [0.06, 0.22] 0.85
Change 0.06%* [0.02, 0.11] 0.01 [—0.03, 0.06] 021
OR [95% Cl]
Obesity-Wave 3 1.37%% [1.10, 1.71] 1.25* [1.01, 1.56] 0.68
Obesity-Wave 4 S [1.31, 1.85] 1.22* [1.00, 1.48] 0.05
Change 1.48%%+ [1.18, 1.86] 1.10 [0.83, 1.46] 0.07

* p<.05; ** p<.01; *** p<.001.

Note: All data come from the National Longitudinal Study of Adolescent Health Sibling Pairs [17]. Genetic risk was measured using the genetic risk score for Europeans
(GRS-E). Regressions were estimated using multi-level models [20] to account for the clustering of observations within families and adjusted for age and sex. Change
models were estimated by including Wave 3 outcomes as covariates in regression models predicting Wave 4 outcomes.
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Figure 1. Comparison of GRS predictions. Panel A compares the predictive performance of GRS-E in both white and black samples of Add
Health respondents based on a model where Wave 3 BMI is predicted by only GRS (separately in each racial group). Panel B focuses on predictions
based on the three risk scores for only the black sample of respondents. The fitted lines are based on linear models controlling for age, sex, and one
of the risk scores. The predictions assume an age of 21 and female.

doi:10.1371/journal.pone.0101596.g001



PGS in Whites/Blacks

* Performed very similarly
* PGS (European) was slightly weaker in blacks

* More inter-continental and global samples are
necessary to fully appreciate how PGS impact
health






