

Lecture 3: Genome-Wide Analysis

Matt McQueen | Associate Professor

Department of Integrative Physiology Institute for Behavioral Genetics Institute of Behavioral Science University of Colorado Boulder

Department of Epidemiology (secondary) Colorado School of Public Health University of Colorado

Harnessing the Information

OVERVIEW

- Study Design
- Analytic Challenges
- Analytic Considerations
- Population Stratification

Study Design

Study Design

- Often neglected in genetic research
 - See population stratification (later)
- The most popular design has been casecontrol studies
- However, cohort studies and family studies serve an important role

Case Control

- Dichotomous outcome
- Efficient for diseases of low prevalence
- Control selection very important
- Often nested within larger cohort study
- Examples
 - WTCCC
 - Psychiatric Genetics Consortium

Cohort Study

- Ideal for more common diseases/disorders
- Quantitative, discrete/binary traits
- Examples
 - Framingham Heart Study (FHS)
 - Agincourt

Family-Based

Covered later

Analytic Challenges

Multiple Testing Multiple Testing

Multiple Testing

- GWAS
 - 1 phenotype
 - 1,000,000 markers
 - ~50,000 p-values < 0.05
- Whole Genome Sequencing
 - 1 phenotype
 - 3B base pairs
 - 33333

Addressing Multiple Testing

- Family-Wise Error Rate (FWER)
 - Bonferroni
- False Discovery Rate (FDR)
 - and variations of...
- Bayesian Approaches
 - and variations of...
- Weighted Hypothesis Testing

Dealing with Multiple Testing

- Brute Force approach comes at a cost
 - Very large samples (time/effort/resources)

 We are inherently limited in what we will be able to uncover using traditional statistical methods

GWAS to Generate Hypotheses

- No one will (or should) take a GWAS finding at face value
 - Replicate
 - Replicate
 - Replicate
- Many journals don't accept association findings without independent replication

Analytic Considerations

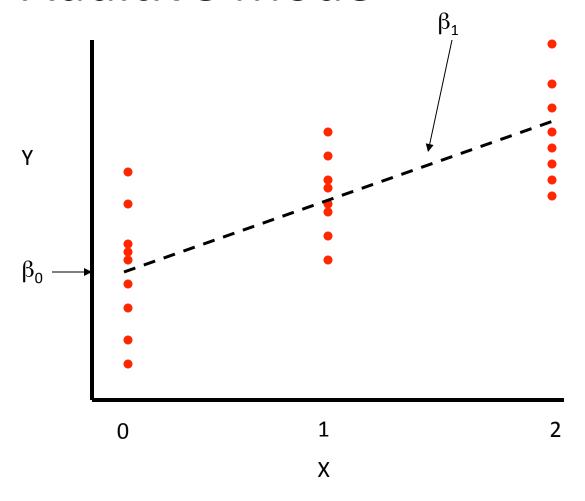
Coding Genotypes

- Assume a biallelic marker (SNP)
- There are three possible genotypes
 - -AA
 - Aa
 - aa

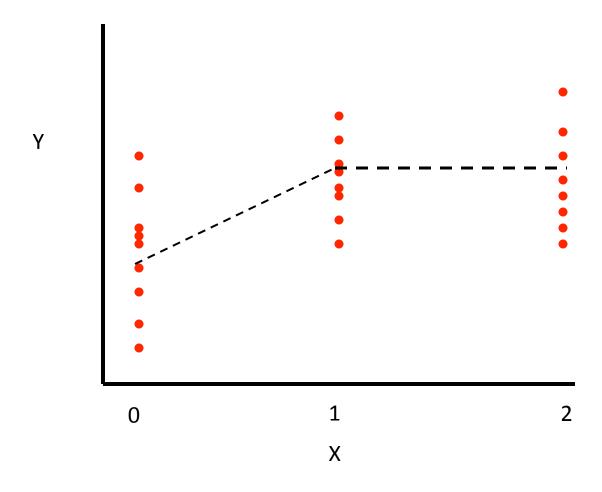
Coding Genotypes

	Genotype			
	aa	aA	AA	
Genotype (A)	0,0,1	0,1,0	1,0,0	
Additive (A)	0	1	2	
Dominant (A)	0	1	1	
Recessive (A)	0	0	1	

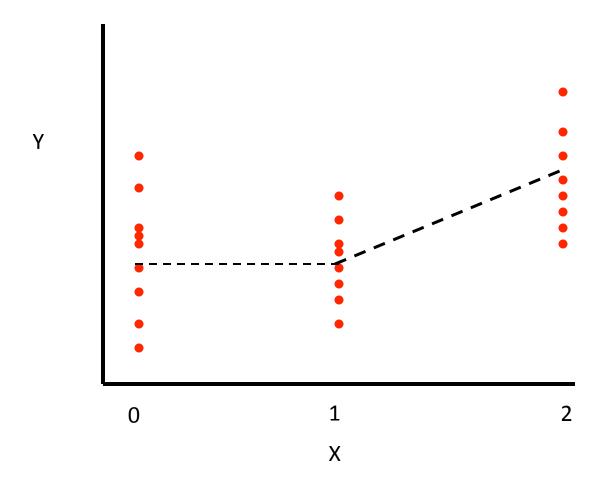
Genotype Coding

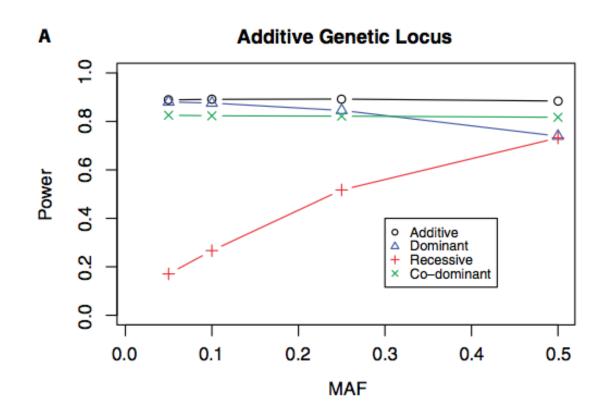

Marker Score = X

Additive: X = (0, 1 or 2)

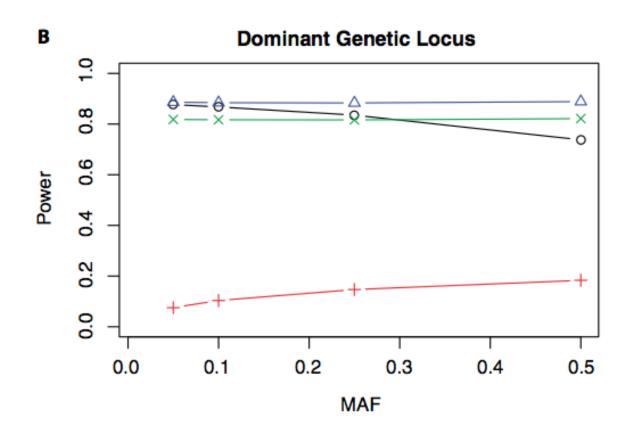

Dominant: X = (0 or 1)

Recessive: X = (0 or 1)


Additive Mode


Dominant Mode

Recessive Mode



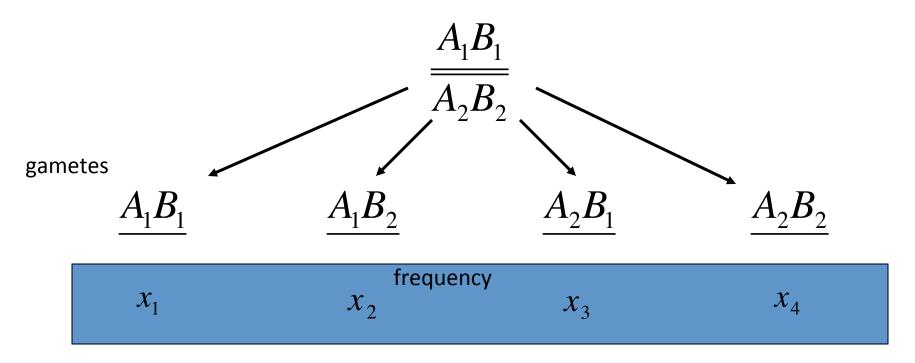
Genotype Coding...

- Additive
- Dominant
- Recessive
- × Co-dominant

Genotype Coding...

- Additive
- Dominant
- Recessive
- × Co-dominant

Genotype Coding...


- Additive
- Dominant
- + Recessive
- × Co-dominant

What types of analyses?

- Anything goes!
 - Typically, one large "do loop"
- Dichotomous phenotypes
- Quantitative phenotypes
- Time to onset
- Cross-sectional, longitudinal

Limitations

- Software
 - PLINK will only take you far
 - May need to write custom scripts to get what you want
 - SAS, R, SPSS, STATA, etc

Gametes	A_1B_1	A_1B_2	A_2B_1	A_2B_2
Frequency	X ₁	X ₂	<i>X</i> ₃	X ₄

Gametes	A_1B_1	A_1B_2	A_2B_1	A_2B_2
Frequency	X ₁	X ₂	<i>X</i> ₃	X ₄

Allele	A_1	A_2	B_1	B_2
Frequency	$\rho_{A1} = x_1 + x_2$	$p_{A2} = x_3 + x_4$	$p_{B1} = x_1 + x_3$	$\rho_{B2} = x_2 + x_4$

Gametes	A_1B_1	A_1B_2	A_2B_1	A_2B_2
Frequency	X ₁	X ₂	<i>X</i> ₃	X ₄

Allele	A_1	A_2	B_1	B_2
Frequency	$\rho_{A1} = x_1 + x_2$	$p_{A2} = x_3 + x_4$	$p_{B1} = x_1 + x_3$	$p_{B2} = x_2 + x_4$

D = Observed - Expected

$$D = x_1 - p_{A1}p_{B1}$$

$$D = x_1 - (x_1 + x_2)(x_1 + x_3)$$

$$D = x_1x_4 - x_2x_3$$

After one generation of random mating:

$$x'_{1} = x_{1} - \theta D$$

 $x'_{2} = x_{2} - \theta D$
 $x'_{3} = x_{3} - \theta D$
 $x'_{4} = x_{4} - \theta D$
 $D_{t=1} = x'_{1}x'_{4} - x'_{2}x'_{3}$
 $D_{t=1} = (1 - \theta)D$

After *t* generations:

$$D_t = (1 - \theta)^t D_0$$

What does this mean?

$$D_t = (1 - \theta)^t D_0$$

D_0	theta	t	D
1	0.5	10	0.001
1	0.1	10	0.35

Normalized LD Parameters

$$D' = \frac{D}{D_{\text{max}}}$$

$$D_{max}$$
 = $min(p_{A1}p_{B2}, p_{A2}p_{B1})$ if D is positive
= $min(p_{A1}p_{B1}, p_{A2}p_{B2})$ if D is negative

Now, LD ranges from -1 to +1

Another commonly used LD measure

$$r^2 = \frac{D^2}{p_{A1}p_{A2}p_{B1}p_{B2}}$$

Reasons for LD

- Mutation
- Population Subdivision
- Genetic Drift
- Lack of Recombination
- Selection
- Non-random Mating

LD in GWAS

- SNP markers that are in close proximity may be picking up the same signal
- One typically sees a cluster of significant pvalues around a signal
- Two SNPs associated

Population Stratification

Genetic Associations

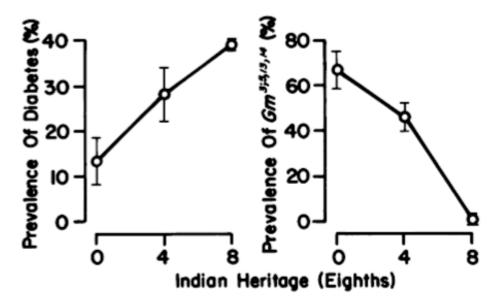
- Truth
 - Causal locus (direct)
 - In LD with causal locus (indirect)
- Chance
 - If you test 100 times ~ 5 tests < 0.05
 - The association is due to chance no causal underpinning
- Bias
 - Association is not causal
 - Population stratification

Stratification

Essentially a confounder!

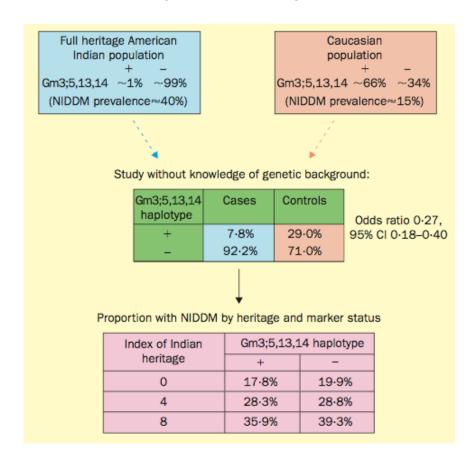
How does it happen?

How Does it Happen?


- Two Necessary Components:
 - Subpopulation 1 has higher prevalence (mean) of disease
 - Subpopulation 1 has different allele frequency

Examine the Data

- Allele frequencies in ethnic subgroups
- Prevalence (means) in ethnic subgroups


Famous Example

Knowler et al (1988)

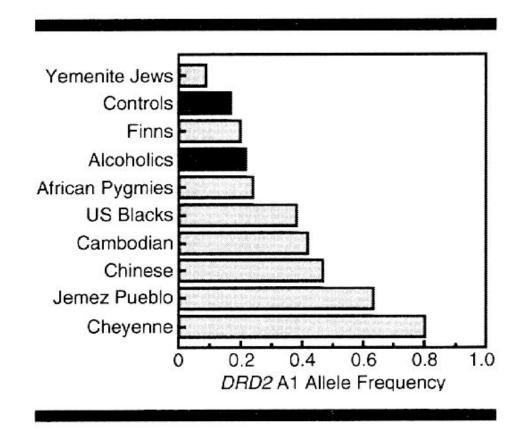
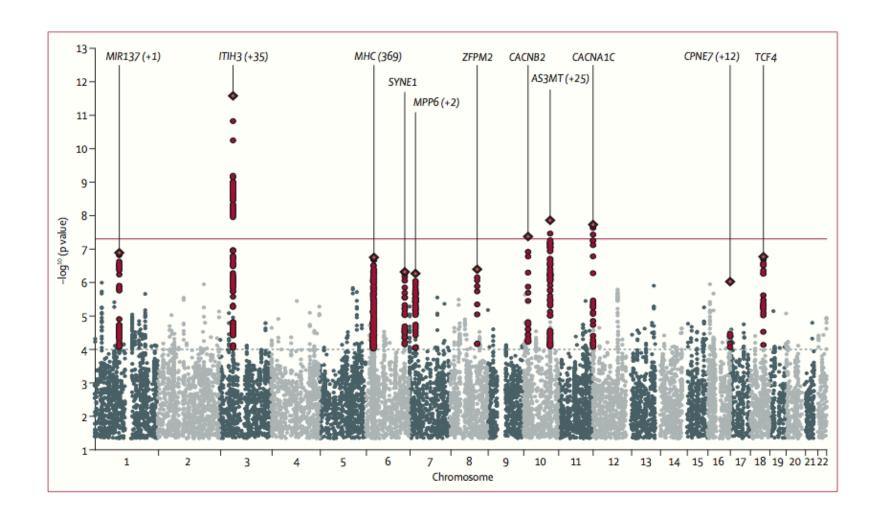


Figure 3 Age-adjusted prevalence (± 1 standard error) of diabetes (left) and of $Gm^{3;5,13,14}$ (right), according to Indian heritage, among residents of the Gila River Indian Community.

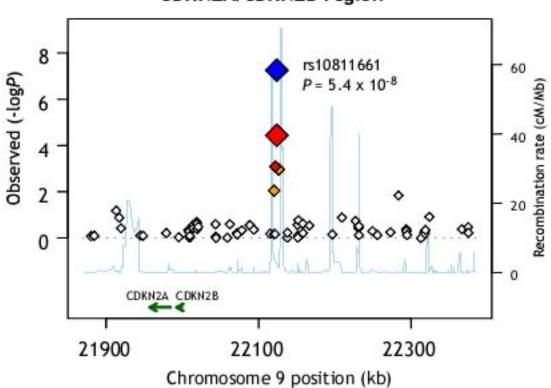
Cardon et al (2003)

Dopamine Receptor D2

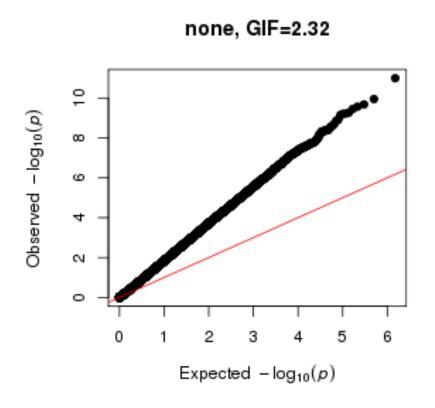

Managing Population Stratification

- Self-Reported Ancestry
 - Match (design) or Adjust (analysis)
- Use other genetic markers (ancestry informative)
 - Genomic Control (Devlin U of Pittsburgh)
 - STRUCTURE (Pritchard U of Chicago)
 - Eigenstrat (Reich Broad Institute/Harvard)
 - Multi-dimensional scaling (MDS PLINK)
- Use a family-based design

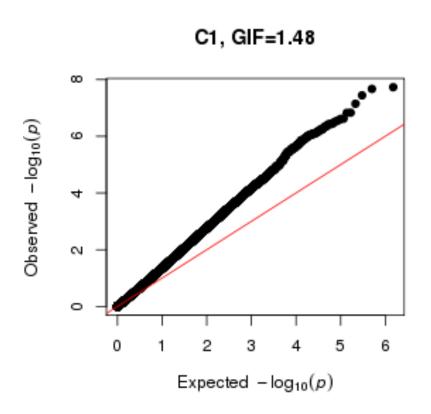
Displaying GWAS Results

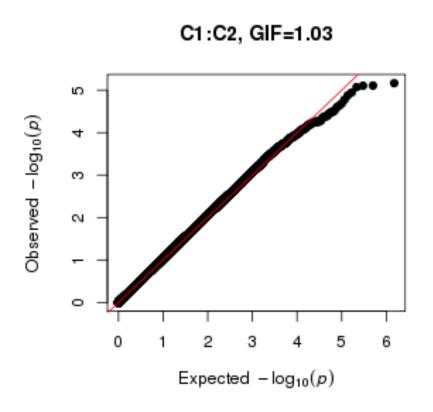

- Typically, investigators will graphically display results using a Manhattan Plot
- If there is an interesting signal, investigators might also generate a regional plot
- They will also generate a quantile-quantile (QQ) plot to inspect results

Manhattan Plot



Regional Plot




QQ Plot (unadjusted)

QQ Plot (adjusted for 1 PC)

QQ Plot (adjusted for 2 PCs)

Next up...

• Tutorial 3