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EXPERIMENTAL METHODS FOR CHARTING PROTEIN-PROTEIN INTERACTION NETWORKS
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Cellular functions result from the coordinated action of groups of proteins interacting in molecular assemblies, pathways, or networks. The systematic and unbiased charting of 
protein-protein interaction (PPI) networks relevant to health or disease in a variety of organisms has become an important challenge in systems biology. Here, we review the main 
parameters and characteristics used to define PPI networks.

Experimental Methods for Charting Protein-Protein Interaction Networks
Genetic, ex vivo methods, such as the yeast two-hybrid system or protein complementation assays, measure pairwise binary, even transient, interactions. Biochemical 
approaches relying on affinity purification and mass spectrometry-based protein identification (AP-MS) are designed for the characterization of sturdy protein complexes. Direct, 
binary associations can be inferred from highly reciprocal AP-MS data sets by computational methods, such as the spoke and matrix models or socio-affinity scoring.

Data Quality
The overall quality of protein-protein interaction data sets is routinely evaluated through comparison with golden standards (lists of known high-confidence, literature-curated 
interacting proteins) and negative sets (lists of proteins that do not interact). This is generally replaced by sets of proteins that are unlikely to interact: for example, sets of random 
protein pairs or lists of proteins never reported to “co-occur” (coexpression, colocalization, coconservation, gene fusion, synteny, text mining, etc.). To ensure proper use by other 
scientists, researchers are encouraged to follow the molecular interaction experiment (MIMIx) guidelines when reporting PPI data to public databases (Orchard et al., 2007).

The following benchmark parameters can be deduced: (1) the false positive rate (FPR, background) is the fraction of identified interactions that are in the negative set; (2) the 
true positive rate (TPR, or accuracy) is the fraction of identified, genuine interacting protein pairs: TPR = 1 − FPR; (3) the false negative rate (FNR) is the fraction of the golden 
standard interactions that have been missed; (4) the coverage is the fraction of the golden standard covered by an experimental data set: coverage = 1 − FNR; and (5) the true 
negative rate (TNR) is the fraction of unidentified, genuine, noninteracting protein pairs.

Prediction of Protein Complex Topologies
The spoke model assumes that the bait interacts directly with each one of the copurifying proteins. The matrix model assumes that any two proteins within the set of copurifying 
proteins have pairwise direct interactions. The socio-affinity scoring integrates both the spoke and matrix models. It measures the frequency with which pairs of proteins were 
found associated within sets of biochemical purifications; protein pairs with high scores are more likely to be in direct physical contact.

Network Components
Node, protein; edge, interaction or link between two nodes; hub, node with a high degree (see below); date hub, hub that does not coexpress and/or colocalize with interacting 
nodes (interactions at different times or locations); party hub, hub that coexpresses and/or colocalizes with interacting nodes (simultaneous interactions).

Network Topologies and Structures
In random networks, all nodes have approximately the same number of edges (same degree, see below). In scale-free networks, most of the nodes have only a few edges, 
and a few nodes (also called hubs) have a very large number of edges. The degree distribution approximates a power law. In hierarchical networks, sparsely linked nodes are 
components of highly clustered areas, and a few hubs connect these highly clustered regions. Hierarchical networks are characterized by their modularity, a power-law degree 
distribution, and a large average clustering coefficient. The discrete topologies confer different network vulnerability to perturbation. Whereas random networks are sensitive to 
random attacks, scale-free networks are resistant to such failures. However, they show susceptibility to targeted attacks.

Network Measures
The degree, or connectivity (k), measures how many edges a node has to other nodes. The degree distribution, P(k), gives the probability that a selected node has exactly k 
edges. The degree distribution is used to characterize different classes of networks. The clustering coefficient (C) measures the degree of interconnectivity in the neighborhood 
of a node. This is the ratio between the number of observed links between the neighbors of a node and the number of all possible links between the neighbors of this node if all 
of this node’s neighbors were connected to each other. The average clustering coefficient, < C >, characterizes the overall tendency of nodes to form clusters. It is a measure 
of a network’s hierarchical property. The assortativity, or neighbor connectivity (NC), represents the average degree of the nearest neighbors of a node. In PPI networks, highly 
connected nodes (hubs) do not link directly to each other but interact with sparsely connected nodes. The distance, or path length, between two nodes represents the number 
of edges that separate the two nodes. There are many alternative paths between two nodes; the shortest path (SP) has the smallest number of edges. The betweenness (B) is a 
measure of a node’s centrality in a network. It represents the fraction of all of the shortest paths between all nodes in a network that pass through a given node.

Protein-Protein Interaction Resources
Biocarta, www.biocarta.com; BioGRID, www.thebiogrid.org; BOND, www.bond.unleashedinformatics.com; DIP, www.dip.doe-mbi.ucla.edu; HPRD, www.hprd.org; 
IntAct, www.ebi.ac.uk/intact; MINT, www.mint.bio.uniroma2.it; Reactome, www.reactome.org; SGD, www.yeastgenome.org; STRING, www.string-db.org.

Visualization Tools for Biological Networks
Cytoscape, www.cytoscape.org; NAViGaTOR, www.ophid.utoronto.ca/navigator; Osprey, www.biodata.mshri.on.ca/osprey/servlet/Index.
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