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SUMMARY

Protein interactions form a network whose structure
drives cellular function and whose organization
informs biological inquiry. Using high-throughput
affinity-purification mass spectrometry, we identify
interacting partners for 2,594 human proteins in
HEK293T cells. The resulting network (BioPlex) con-
tains 23,744 interactions among 7,668 proteins with
86% previously undocumented. BioPlex accurately
depicts known complexes, attaining 80%–100%cov-
erage for most CORUM complexes. The network
readily subdivides into communities that correspond
to complexes or clusters of functionally related pro-
teins. More generally, network architecture reflects
cellular localization, biological process, and molecu-
lar function, enabling functional characterization of
thousandsof proteins.Network structure also reveals
associations among thousands of protein domains,
suggesting a basis for examining structurally related
proteins. Finally, BioPlex, in combination with other
approaches, can be used to reveal interactions of
biological or clinical significance. For example, muta-
tions in the membrane protein VAPB implicated in fa-
milial amyotrophic lateral sclerosis perturb a defined
community of interactors.
INTRODUCTION

A central goal in cell biology is to describe the molecular pro-

cesses that drive cellular function. Although these are genomi-

cally encoded, they are executed by the proteome. The prote-

ome can be viewed as constellations of interacting protein

modules organized into signal transduction networks, molecu-

lar machines, and organelles. However, our knowledge of pro-

teome architecture is fragmentary, as is our conception of how

protein interconnectivity is influenced by genetic and cellular

variation.
Our understanding of mammalian proteome structure has

emerged from five strategies. First, focused biochemical studies

have revealed stablemacromolecular complexes. Second, affin-

ity purification of epitope-tagged proteins followed by mass

spectrometry (AP-MS) has identified proteins associated with

baits from many protein families, including deubiquitinating en-

zymes (Sowa et al., 2009), histone deacetylases (Joshi et al.,

2013), and chaperones (Taipale et al., 2014). Third, complemen-

tary approaches involving either target-specific antibodies for

immunoprecipitation (IP)-MS or correlation profiling of soluble

protein assemblies have identified many complexes (Havugi-

mana et al., 2012; Malovannaya et al., 2011). Fourth, yeast

two-hybrid (Y2H) analysis of �14,000 human open reading

frames (ORFs) has identified binary protein interactions (Rolland

et al., 2014). Finally, several databases archive protein interac-

tions from literature (Franceschini et al., 2013; Licata et al.,

2012; Ruepp et al., 2010; Stark et al., 2011; Warde-Farley

et al., 2010). Although these repositories allow in silico inter-

action network construction, many literature interactions are

context dependent, and the stringency of criteria used to identify

interactions varies across studies. Thus, databases vary in con-

tent and quality.

Given this perspective, mapping globally the human protein in-

teractions within a single cell type in a physiological context and

understanding how network architecture depends upon genetic

and physiological variation remain daunting objectives. Inherent

challenges include (1) the myriad genes, isoforms, and modifica-

tion states encoded by the human genome; (2) the low abun-

dance of many proteins, which limits detection; (3) themany tran-

sient interactions that complicate signaling network mapping;

and (4) the prevalence of membrane proteins, which often re-

quires specialized methods for purification. Although no single

approach can address all challenges, several attributes of AP-

MS will facilitate delivery of a ‘‘first-pass’’ global human interac-

tome. One advantage is its exquisite sensitivity. In addition, unlike

binary methods, AP-MS determines components within multi-

protein complexes. AP-MS has previously mapped a substantial

fraction of yeast (Gavin et al., 2002; Ho et al., 2002; Krogan et al.,

2006) and Drosophila (Guruharsha et al., 2011) interactions.

Here, we report AP-MS analysis of 2,594 baits to produce a

human interaction map spanning 23,744 interactions among
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7,668 proteins. This network represents the first phase of a long-

term effort to profile the entire human ORFEOME collection via

AP-MS and generate a comprehensive map of human protein

interactions. At the time of publication, the latest version of the

publicly available BioPlex network includes 5,884 AP-MS exper-

iments with over 50,000 interactions. Although we detected

many known interactions, validating the methodology, most

have not been reported, reflecting targeting of many under-stud-

ied proteins and highlighting AP-MS sensitivity. In addition, we

identified 354 communities representing known and previously

unidentified complexes. Moreover, integration of protein domain

and localization information revealed enrichment of domains

within subnetworks and highly correlated localization within

complexes, while suggesting biological roles for proteins of

unknown function. Finally, we merge isobaric labeling with

AP-MS to quantify how genetic variation alters interactions of

VAPB variants associated with familial amyotrophic lateral

sclerosis (ALS), revealing mutation-specific loss and gain of in-

teractions. Ultimately, BioPlex unveils both individual protein

functions and global proteome organization.

RESULTS

Achieving Rapid and Reliable AP-MS
Globally applying AP-MS requires both high capacity and

rigorous quality control. As depicted in Figure 1A and described

in the Supplemental Experimental Procedures, we have initiated

high-throughput lentiviral expression and AP-MS profiling of

C-terminally FLAG-HA-tagged baits from 13,000 protein-coding

ORFs within the sequence-validated Human ORFEOME collec-

tion v. 8.1 (Yang et al., 2011). Using this system, single biolog-

ical replicates of up to 600 baits have been expressed in

HEK293T cells, immuno-purified, and analyzed via mass spec-

trometry in technical duplicate each month. Baits have been

processed in batches corresponding to 96-well plates within

the ORFEOME, selected randomly from the library. Peptides

and proteins were identified and filtered within each IP to a

1% false discovery rate (FDR), with additional filters to control

network FDR (Supplemental Experimental Procedures). Given

the scale of this endeavor, a paramount concern is data integ-

rity. In addition to clone validation and quality control during

the wet-lab pipeline, automated evaluation of MS perfor-

mance, comparison of LC-MS technical duplicates, automated

validation of bait protein detection, and inclusion of positive

(RAB11B) and negative (GFP) controls ensured consistent

data quality (Figure S1A and Supplemental Experimental Proce-

dures). Although analysis of all protein-coding genes in the

Human ORFEOME is ongoing, we focus here on the first

2,594 AP-MS experiments (Table S1).

Global Protein Interaction Mapping via CompPASS-Plus

Our work employs CompPASS, which has identified high-confi-

dence interacting proteins (HCIPs) for up to �100 baits (Sowa

et al., 2009). CompPASS quantifies enrichment of each protein

in each IP, relative to other unrelated AP-MS datasets, based

on abundance, detection frequency, and reproducibility. HCIPs

are identified using the normalized weighted D score (NWD

score) and Z score (Figure S2A).
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To improve performance across thousands of AP-MS data-

sets, we developed CompPASS-Plus, a Naive Bayes classifier

that recognizes HCIPs using several features (Figure S2A). In

addition to CompPASS scores, features measure batch varia-

tions, overall spectral counts, unique peptide counts, and pro-

tein detection frequency. Shannon entropy quantifies a protein’s

consistency of detection across technical duplicate LC-MS ana-

lyses, which removes inconsistent protein identifications and

minimizes LC carry-over artifacts (Figure S2B). Because Comp-

PASS-Plus must distinguish HCIPs from background proteins

and incorrect protein identifications, proteins are sorted into

three classes (Figure S2C). Since the few (0.05%) incorrect pro-

tein identifications that survive filtering earn NWD and Z scores

that most closely resemble those of HCIPs, sorting incorrect

protein identifications separately improves accuracy. To train

CompPASS-Plus, incorrect protein identifications weremodeled

using decoy proteins that survived peptide- and protein-level

FDR filtering, while HCIPs were modeled using bait-prey pairs

reported in STRING (Franceschini et al., 2013) or GeneMania

(Warde-Farley et al., 2010); all other bait-prey pairs modeled

non-specific background. To minimize over-fitting, each AP-

MS experiment was scored using a classifier trained excluding

data from its own IP and other IPs on the sameplate (Figure S2D).

CompPASS-Plus assigns each bait-prey pair in every AP-MS

experiment three scores, reflecting the probability that it corre-

sponds to a wrong identification, a background protein, or an

HCIP. Bait-prey pairs that receive an interaction score of at least

0.75 are considered HCIPs.

CompPASS-Plus effectively distinguishes interactions from

background. When AP-MS data were aligned with high-confi-

dence interactions from CORUM (Ruepp et al., 2010), high-

scoring bait-prey pairs were most frequently confirmed (Fig-

ure S2E). Similarly, over 87% of decoy proteins were classified

as incorrect identifications (Figure S2F). When used to classify

known true- and false-positive interactions across 30 biological

replicate positive and negative control AP-MS experiments,

CompPASS-Plus identified known interactions with high sensi-

tivity and specificity (Figure S2G).

The utility ofCompPASS-Plus to identify HCIPs from individual

AP-MS experiments is depicted in Figures 1B and 1C. From

495 proteins detected with CDK1, only 16 remained after

filtering, and all but 2 (ICK and PKMYT1) are known CDK1-asso-

ciated proteins or substrates. Notably, all HCIPs for XRCC2 and

EIF4E are known (Figure 1C)—XRCC2 recovers the entire

BCDX2 complex (Masson et al., 2001), while EIF4E binds the

EIF4F complex, EIF4E-binding proteins 1 and 2, and its known

interactor ANGEL1 (Gosselin et al., 2013). Similarly, 11 of 13

HCIPs for filamentous SEPT1 GTPase are either related SEPT

proteins or known SEPT1 interactors. Other examples are high-

lighted in Figures S1B and S1C, comparing BioPlex with interac-

tions reported by Y2H (Rolland et al., 2014) or in a previous

AP-MS study of DUBs (Sowa et al., 2009).

An AP-MS Map of the Human Interactome
Although each AP-MS experiment identifies proteins associated

with one bait, when all are combined, the interactions form a

model of the interactome. This network, whose largest com-

ponent is depicted in Figure 2A, includes 23,744 interactions
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Figure 1. High-Throughput Interaction Mapping via AP-MS

(A) AP-MS platform: (1) a lentiviral library of 13,000 FLAG-HA-tagged ORFs was constructed from the Human ORFEOME; (2) 293T cells were infected and

expanded under puromycin selection; (3) baits and preys were immuno-purified; (4) tryptic digests were analyzed in technical duplicate by LC-MS; (5) proteins

were identified and specific interactors found; (6) and interactions were assembled to model the human interactome. Up to 600 AP-MS experiments may be

completed per month.

(B) CompPASS-Plus extracts 16 interactors for bait CDK1 from a background of nearly 500 proteins.

(C) Interaction maps for baits XRCC2, EIF4E, and SEPT1 (red). Nearly all interactions have been previously described. Interactors were identified from back-

grounds of 487, 778, and 749 proteins, respectively.
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Figure 2. BioPlex Network Properties

(A) BioPlex. The largest component is depicted.

(B) Vertex degree distribution of all proteins in

BioPlex. The dashed line represents the best-

fit power law (see Supplemental Experimental

Procedures).

(C) Histogram depicting the number of degrees

separating all protein pairs.

(D) Functional classifications of baits and preys

assigned by PANTHER and compared against the

functional distributions of our HEK293T proteome

and the entire human UniProt proteome.
connecting 7,668 gene products (Table S2). We call this network

BioPlex (biophysical interactions of ORFEOME-derived com-

plexes) and provide a graphical viewer (Figure S3). Of 2,594

baits, 319 were not found to interact with any other proteins in

293T cells under basal conditions as C-terminally tagged pro-

teins (Table S1). The median bait interacted with six other pro-

teins, whereas the median gene product (including preys, as

well as baits) participated in three interactions, suggesting that

Bioplex underestimates interactions of proteins not yet targeted

for AP-MS.

Although the median interaction count for each protein is low,

significant variability is observed and the degree distribution is

skewed by proteins with many interacting partners, reflecting

coverage of proteins participating in large assemblies. When

plotted in log-log space (Figure 2B), the fraction of proteins

observed across the range of vertex degrees follows a linear

trend for degrees above 4 that is consistent with power law

behavior typical of scale-free networks (Barabasi and Albert,

1999) and has been observed in protein interaction and meta-

bolic networks (Vidal et al., 2011). In addition, fewer proteins

than expected participate in very few (i.e. less than five) interac-

tions, as indicated by the deviation from power law behavior for
428 Cell 162, 425–440, July 16, 2015 ª2015 Elsevier Inc.
low interaction counts. More than 98% of

protein pairs connect to each other, most

within five or fewer degrees of separation

(Figure 2C).

To accurately model the interactome,

BioPlex should sample proteins evenly

across functional categories. Functional

classification using PANTHER (Mi et al.,

2013) in conjunction with all UniProt pro-

teins (Magrane and Consortium, 2011)

revealed a distribution of baits and preys

that closely matched UniProt functional

categories (Figure 2D). Another consid-

eration is the influence of the AP-MS sys-

tem on the interaction network. Because

baits have been expressed in HEK293T

cells, we profiled the 293T proteome,

identifying 10,326 proteins and assigning

each to abundance percentiles (Fig-

ure S4A). HEK293T proteome functional

classification mimicked UniProt and

most closely resembled the distribution
observed for preys (Figure 2D). We then mapped the 293T pro-

teome onto BioPlex. As expected, 90% of preys were also

detected in 293T cells via total proteome analysis (Figure S4B);

the remaining 10% were only detected via AP-MS, suggesting

that their abundance was below detection limits without en-

richment. In contrast, only 60% of baits were detected in our

293T proteome (Figure S4B). This is not surprising because

bait selection was unbiased, and 293T cells only express a

fraction of ORFEOME-encoded proteins. Baits were drawn

evenly from across native 293T expression levels. In contrast,

preys were enriched in the upper third of the abundance range,

with proteins in the bottom 25% under-represented (Fig-

ure S4C). Though bait levels vary across 2,594 IPs, most were

detected at moderate levels (Figure S4D). Furthermore, bait

abundances and interaction counts were uncorrelated (Fig-

ure S4E). Although the extent of bait overexpression is difficult

to judge and varies across IPs, previous experimentation has

shown that overexpression has little effect on identification of

true interacting partners after CompPASS analysis (Sowa

et al., 2009). Overall, notwithstanding idiosyncrasies of the

293T expression system, the resulting network constitutes a

representative cross-section of the proteome.
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BioPlex Recapitulates Known Complexes and Reveals
Thousands of New Interactions
Toassess its accuracy and completeness,we superimposedBio-

Plex onto high-confidence CORUM complexes detected via low-

throughput methods, attaining high overlap. When at least two

constituent proteins were selected as baits, more than 25% of

CORUM complexes were perfectly recapitulated by AP-MS (Fig-

ure 3A). Similarly, over 1/3 of complexes achieved at least 90%

coverage, whereas 1/2 were 80% complete and nearly 3/4 at-

tained at least 50%coverage. Proteinswithin a complex are often

highly interconnected, as for the Arp 2/3 and NuA4/Tip60-HAT

complexes and the Exosome. In contrast, RBBP7 belongs to a

large complex assembled from two smaller complexes, each of

which has been separately isolated by AP-MS: HDAC1/2-ING1-

SIN3A-SAP30-SAP18-RBBP4 (complex I) and ARID1A-ARID4B-

SMARCD1-SMARCC1-SMARC2-SMARCB1-SMARCA4 (com-

plex II) (Kuzmichev et al., 2002). Our RBBP7 analysis identified all

components of complex I except SAP18, possibly reflecting its

small size (153 amino acids), as well as a single component of

complex II (ARID4B). In contrast, SMARCD1 associated with

six of eight subunits of the complex II SMARC/ARID subcomplex

(Figure 3A). Thismay reflect relatively weaker interactions among

the subassemblies. Likewise, the CDK-activating kinase (CAK)

complex CDK7-CCNH-MNAT1 is a multifunctional protein ki-

nase that is involved in both CDK activation and in transcrip-

tion-coupled repair through the TFIIH complex. Although the

core kinase complex and its interactions with three TFIIH com-

plex components (ERCC2, ERCC3, and GTF2H1) were detected

using CDK7, CCNH, and MNAT1 as baits, several TFIIH compo-

nents were not detected (Figure 3A). This incomplete TFIIH com-

plex identification with tagged CAK could reflect stringent

washing or the relative abundance of CAK complexes versus

TFIIH complexes. To understand why many TFIIH complex

members were absent, we examined AP-MS data targeting

GTF2H3 that were acquired via our pipeline while this manu-

script was in preparation. Encouragingly, we detected interac-

tions with GTF2H1, GTF2H2, GTF2H4, and ERCC3, attaining

nearly complete coverage of this complex (data not shown).

Overlap with CORUM will continue to improve as the network

grows to include analysis of most human proteins.

To enable more extensive comparison, we compiled all

human physical interactions reported in CORUM, BioGRID

(Stark et al., 2011), GeneMania, STRING, and MINT (Licata

et al., 2012). The latter four databases accept a variety of

evidence in support of protein interactions, including high-

throughput techniques, and thus contain many more interac-

tions at correspondingly higher false-positive rates. Only phys-

ical interactions supported by direct experimental evidence

were included; interactions due to co-expression, co-localiza-

tion, text-mining, or predictions were excluded. Inter-database

overlap was limited, with fewer than 25% of interactions re-

ported by multiple databases (Figure 3B). Notwithstanding

such narrow agreement, interactions seen in BioPlex were

more frequently found in multiple databases (Figure 3B). This

suggests that BioPlex preferentially overlaps with the most

frequently reported interactions. Although interactions found

in all five databases were confirmed by AP-MS nearly 50% of

the time and more than 35% of interactions reported by four
databases were confirmed, only 2% of interactions unique to

just one database were observed (Figure 3C).

Approximately 84% of the 23,744 BioPlex interactions have

not been reported (Figure 3D), reflecting sampling of many

‘‘pioneer’’ proteins and increased analytical depth afforded by

new instrumentation. For further validation, we compared re-

ported subcellular localizations of interacting protein pairs as

an indirect measure of plausibility. Although co-localization

cannot guarantee physical association, interacting protein pairs

must at least partially co-localize. In contrast, false-positive

interacting proteins would localize randomly with respect to

each other. To assess co-localization, we mapped UniProt

subcellular localizations onto BioPlex. The tendency for co-

localized proteins to interact is measured by graph assortativity

(Supplemental Experimental Procedures). Positive assortativ-

ities indicate preferential interactions among proteins in the

same compartment, whereas values near zero imply random

interactions.

As an indirect validation, we calculated assortativities for

several databases and interaction datasets and compared

each with BioPlex (Figure 3E). Because localizations of proteins

in each dataset varied considerably, pairwise comparisons with

BioPlex were performed focusing on interactions that connected

proteins in both networks. Assortativities quantify each net-

work’s tendency to connect these shared proteins according

to subcellular localization. Pairwise analyses were also repeated

with randomized subcellular localizations. Although assortativ-

ities in each pairwise comparison varied due to differences in

the extent of biological characterization and quality of subcellular

localization information available for shared proteins, all net-

works exhibited non-random interactions. Proteins included in

both CORUMand BioPlex were well-characterized and predom-

inantly nuclear or cytoplasmic, attaining the highest coefficients.

In contrast, comparisons that included higher proportions of less

studied proteins exhibited reduced, though highly significant,

preferences for connecting proteins with shared localization.

Overall, BioPlex compared favorably with published interaction

networks: in five of seven cases, BioPlex showed a greater ten-

dency to connect co-localized proteins; in the remaining two

cases, differences were small and reflected in part interactions

missing from BioPlex because neither protein has been targeted

for AP-MS. This analysis suggests that the BioPlex network is at

minimum comparable in quality to previously published interac-

tion data, a conclusion that extends to the many unreported in-

teractions it contains.

BioPlex Community Structure Reveals the Interactome
Functional Organization
Although several BioPlex complexes have been highlighted by

comparison with CORUM, complexes may also be revealed

from network topology alone as clusters of highly interconnected

proteins. Because no prior knowledge is required, community

detection algorithms may associate new proteins with known

complexes and identify unknown complexes. We have em-

ployed a two-stage strategy to map BioPlex community struc-

ture, using clique percolation (Palla et al., 2005) to identify

256 communities that were further subdivided via modularity-

based clustering (Newman, 2004) into 354 communities and
Cell 162, 425–440, July 16, 2015 ª2015 Elsevier Inc. 429
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Figure 3. Evaluation of AP-MS Protein Interactions

(A) AP-MS interactions superimposed onto CORUM complexes. The pie chart depicts the fraction of complexes achieving the indicated coverage in BioPlex.

Only complexes containing two or more baits were considered. Five representative CORUM complexes: baits are colored blue, whereas preys are red and

proteins not observed by AP-MS are gray. Interactions among CORUM complex members are gray, whereas interactions confirmed by AP-MS are red.

(B) Physical protein interactions reported in BioGrid, CORUM, GeneMania, STRING, and MINT were merged. Left: overlap among databases. Right: overlap

among databases for interactions confirmed by AP-MS.

(C) Fraction of database interactions confirmed by AP-MS as a function of the number of supporting database reports. The composite interaction database was

filtered to include only interactions connecting one of 2,594 baits with proteins observed as baits or preys in the interaction network.

(legend continued on next page)
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subcommunities (Table S3). Community size varied from 2 to 140

proteins, though most included fewer than 20 members (Fig-

ure 4A). Most communities encompassed related proteins, as

84% were enriched for at least one GO term or Pfam domain

(Figure S5A). Moreover, many communities match known com-

plexes, forming a network that depicts interactome organization

(Figure 4B). Subsets of this network have been enlarged (Fig-

ure 4C) to reveal underlying protein interactions.

The power of community detection to retrieve known com-

plexes is exemplified by Figure 4C (i). Although the proteasome

emerged as one large community following clique percolation,

further modularity-based clustering subdivided the proteasome

into two clusters corresponding largely to its catalytic particle

(primarily PSMA and PSMB subunits) and regulatory particle

(primarily PSMC, PSMD, and UCHL5 subunits), as well as a

CUL5-TCEB1-RAB40 ubiquitin ligase complex that links with

the proteasome via the alternative cap protein PSME3 and

FAM192A. Chaperones that assist proteasome assembly (e.g.,

PSMG1/2, POMP) and other regulators (PAAF1 and FOXO7)

also cluster with the proteasome, along with proteins (e.g.,

ZFAND2B, CCDC74B, and C16orf70) that have no known pro-

teasomal connections.

A unique feature of clique percolation is that it allows proteins

to be shared among multiple communities. Such proteins often

physically connect or coordinate distinct cellular activities. Alter-

natively, specificity factors for enzymes involved in diverse reg-

ulatory processes may be shared with multiple communities.

For example, the community in Figure 4C (iii) contains a cluster

of protein phosphatase catalytic and regulatory subunits that

connects to a highly interconnected RNA polymerase cluster,

as well as a cluster of kinetochore components. Phosphorylation

controls both RNA polymerase and kinetochore function and

linkage to phosphatase components may reveal common regu-

latory factors and mechanisms for distinct target complexes.

Further examples include CDK (Figure 4C, vi), vesicle function

(Figure 4C, ii), LIM domain and homeobox transcription factor

(Figure 4C, v), and cullin ring ubiquitin ligase/signalosome (Fig-

ure 4C, iv) communities.

Many communities are united by shared traits that cause

member proteins to preferentially associate (Table S3; Fig-

ure S5A). Some match known complexes, such as the Mediator

(clusters 11a and 11b) and 43S translation pre-initiation com-

plexes (clusters 25a and 25b). Indeed, 33 known Mediator sub-

units separated into two subcomplexes and were devoid of

non-Mediator Complex connections (Figure S5B). Similarly,

cluster 73 contains the FTS1-HOOK1,2,3 protein complex

accompanied by TNFSF13B, whose association was until now

unknown. Such associations can reveal much about unknown

proteins: the little-known protein C11orf74 associates with 5

members of the intraciliary transport particle A (cluster 74). Not

only do its neighbors share biological functions and domains,

but all have been implicated in related ciliary disorders (cranioec-
(D) 86% of AP-MS interactions have not been reported in the databases listed a

(E) Pairwise comparisons of BioPlex with published interaction networks were per

shared localization among proteins detected in both networks. Literature datas

interactions recently reported via yeast-two-hybrid (Rolland et al., 2014) and LC-

with randomized localizations as a control.
todermal dysplasia 1–4, short-rib thoracic dysplasia 9). Finally,

community structure can reflect functional subtleties. Although

clusters 6a, 6b, and 6c uniformly regulate histone acetylation,

each comprises a different acetyltransferase complex and tar-

gets a distinct histone subset.

Protein Interactions Reveal Associations among
Functional Domains
Many proteins may be decomposed into domains or self-con-

tained modules that have independently evolved to perform

specific functions. Domains often recur in the proteome, per-

forming related functions within many proteins. Although

thousands of domains have been identified, the functions of

many are unknown. Because many domains mediate interac-

tions by binding complementary structures within other pro-

teins, analyzing interactions of their parent proteins may

provide functional insights. Such efforts would complement

previous attempts to characterize known or predicted domain

interactions (Boxem et al., 2008). We have mapped Pfam (Finn

et al., 2014) domains to each protein in BioPlex and identified

domain pairs whose parent proteins interact with unusual fre-

quency (Figure 5A). Although co-occurring domains do not

necessarily interact directly and may instead relate indirectly

through other protein features or shared function, these asso-

ciations nevertheless can provide insights into each domain’s

unique biology.

Across BioPlex, 2,968 domain pairs associated at a 1% FDR

(Table S4 and Figures S6A and S6B). Although many associa-

tions describe known relationships among familiar domains,

most link domains with no known connections. As expected,

proteins with protein kinase domains frequently interact with

proteins bearing cyclin N/C domains, reflecting cyclin-depen-

dent kinases. In addition, synaptobrevin associates with SNARE,

and septin-containing proteins co-occur. Similarly, TRiC chaper-

ones containing Cpn60 TCP1 domains associate with proteins

containing WD40 domains whose folding they facilitate (Fig-

ure S6C) (Spiess et al., 2004). Finally, as expected, SCAN-

domain-containing proteins self-associate (Figure S6D) and

frequently assort with KRAB and zf-C2H2 domains.

Amongunreporteddomain associations area subset that relate

domains of unknown functionwith other Pfamdomains, including

14-3-3, UBX, SCAN, and WD40 domains (Figure 5B). Proteins

bearing domains of unknown function provide context for re-

ported domain associations (Figures 5C–5H). For example, the

DUF2045 domain-containing protein KIAA0930 is surrounded

by 14-3-3 proteins (Figure 5C), raising the possibility that

KIAA0930 and the DUF2045 domain may participate in intra-

cellular signaling. Similarly, DUF1162 proteins VPS13A and

VPS13C interact with proteins containing UBX domains (Fig-

ure 5D). Each domain of unknown function presented in Figures

5C–5H is unaccompanied within its parent proteins, ruling out in-

fluence of other domains.
bove.

formed, using graph assortativity to quantify preferential interaction in cases of

ets included BioGRID, CORUM, GeneMania, STRING, and MINT, as well as

MS correlation profiling (Havugimana et al., 2012). Each analysis was repeated
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BioPlex Aids Protein Subcellular Localization Prediction
Because proteins must exist in close proximity to physically

interact, the interactome necessarily reflects the subcellular

localizations of its proteins. Thus, we mapped subcellular local-

ization data fromUniProt onto BioPlex and calculated the enrich-

ment of each subcellular compartment among each protein’s

first and second degree neighbors (Table S5). While enrichment

could indicate that a protein associates with a compartment in

multiple ways, the simplest interpretation is that a protein at least

partially localizes to that compartment. Figure S7 displays pre-

dicted localizations for several proteins and complexes. Fig-

ure S7A depicts predicted localizations for proteasome subunits

and the subnetwork surrounding PSMA1 to illustrate its most

likely localizations. As expected, essentially all proteasome sub-

units are found in both nucleus and cytoplasm; the only ex-

ception is PSME3, the alternative regulatory cap protein that

clustered separately from the rest of the proteasome (Figure 4C,

i). Indeed, previous experiments have demonstrated that unlike

other proteasome subunits, PSME3 localizes specifically in the

nucleus (Wójcik et al., 1998). Other panels depict localizations

for CDKs and related proteins (Figure S7B), complex I of the

mitochondrial electron transport chain (Figure S7C), and the nu-

clear Mediator complex (Figure S7D), which are all consistent

with their known localization.

BioPlex Enables Characterization of Unknown Proteins
A motivation for unbiased mapping of the human interactome

is to explore the biology of uncharacterized proteins. BioPlex

contains interactions for 271 unstudied ORFs (Figure 6A) that

suggest functions and localizations of these proteins. As

described, 117 ORFs were assigned to at least one subcellular

location at a 1% FDR (Table S5 and Figure 6B). Of eight ORFs

predicted by AP-MS to localize to mitochondria, six are known

or suspected mitochondrial proteins (UniProt and/or http://

www.broadinstitute.org/pubs/MitoCarta/), and two (C1orf220

and C17orf39) have not been assigned any localization. For

these two proteins, among many others, their positions within

the AP-MS interaction network provide insights into their primary

subcellular localizations.

To highlight the information encoded by an uncharacterized

protein’s position in the AP-MS network, we provide several ex-

amples in Figure 6C. Inferences about each ORF’s specific inter-

actions, biological function, and localization are summarized

(Table S6). Three of these proteins have been characterized, af-

fording an opportunity to evaluate network predictions. In each

case, agreement was excellent. C15orf29 was found to interact

with proteins KATNA1 and KATNB1, which associate with the

cytoskeleton and participate in microtubule severing. Recently,
Figure 4. Community Analysis of the AP-MS Interactome

(A) BioPlex communities: 256 initial communities were identified via 3-clique p

communities.

(B) Network of communities. Gray circles represent 354 BioPlex communities; cir

communities that share a common protein or were initially classified as a single co

highlight communities expanded in (C).

(C) Each box depicts communities highlighted in (B) at resolution sufficient to obs

communities that initially clustered together and subsequently split are rendered

multiple communities are gray, whereas interactions among members of a comm
C15orf29 was renamed KATNBL1 and may govern KATNA1 ac-

tivity. Similarly, C16orf57 has been renamedUSB1 and identified

as a nuclear protein that participates in RNA splicing and mRNA

processing (Mroczek et al., 2012). Furthermore, C7orf30 is

thought to act as a silencing factor for the mitochondrial ribo-

some (Fung et al., 2013). In contrast, little is known about

C15orf17, C4orf19, and C7orf46. As these proteins show, Bio-

Plex is a roadmap for exploring the uncharted expanses of the

proteome and illuminating the dark corners of cell biology.

Functional Validation of the VAPA/VAPB Interaction
Subnetwork
Perhaps the greatest value of BioPlex is the potential of its

interactions to inspire hypothesis-driven research into under-

explored areas of biological inquiry. To demonstrate this applica-

tion while further validating BioPlex, we examined a subnetwork

involving VAPB, previously found mutated in familial ALS, and

the related protein VAPA.

VAPA and B are ER-localized transmembrane proteins that

anchor proteins implicated in lipid dynamics, primarily lipid

transfer proteins (Lev et al., 2008). Lipid-transfer proteins, such

as oxysterol-binding proteins (OSBPs) and other VAPA/B-asso-

ciated proteins, contain FFAT motifs that interact with the

cytoplasmic MSP domain of VAPA/B (Kaiser et al., 2005).

VAPB and several interacting partners were found in BioPlex,

and VAPA was analyzed using the high-throughput pipeline dur-

ing manuscript preparation, yielding a highly interconnected

network (Figure 7A). As expected, VAPA and VAPB associated

with several OSBPs (Mesmin et al., 2013a), and other proteins

linked with membrane traffic or signaling, several of which

were seen reciprocally.

To validate the interactions found in 293T cells and to under-

stand how patient mutations in VAPB affect individual associa-

tions, we stably expressed VAPB and its mutants (VAPBT46I

and VAPBP56S) in SH-SY5Y cells and performed quantitative

AP-MS using tandem mass tagging (TMT) (see Supplemental

Experimental Procedures and Figure 7B). Biological triplicate

AP-MS complexes from all three variants were subjected to 9-

plex TMT with reporter ion quantification by LC-MS3-based

mass spectrometry. Many interactors identified in 293T cells

also associated with wild-type VAPB in SH-SY5Y cells (Fig-

ure 7C). Normalized reporter ion intensities revealed proteins

that displayed altered VAPB association with specific mutants

(Figure 7C), including increased association of the VAPBP56S

mutant with FAM82A2 (also called PTPIP51) as recently reported

(Stoica et al., 2014). Moreover, whereas previous studies indi-

cated that FAF1 associated equivalently with VAPBWT and

VAPBP56S in vitro (Baron et al., 2014), our in vivo results indicate
ercolation and subdivided via modularity-based clustering, resulting in 354

cle size is proportional to the number of member proteins. Gray edges connect

mmunity and were subdivided via modularity-based clustering. Labeled boxes

erve individual interactions. Proteins are grouped by community membership;

in similar hues; proteins shared among clusters are red. Interactions that span

unity share the color of that cluster.
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Figure 5. Detection of Associations, Including Domains of Unknown Function

(A) After mapping Pfam domains onto BioPlex, the numbers of proteins containing each domain were tallied. Numbers of interactions that linked one domain with

another were also determined. Contingency tables were then populated relating observation of one domain with the other, and Fisher’s exact test determined the

(legend continued on next page)
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that FAF1 associates more weakly with VAPBT46I and VAPBP56S

relative to VAPBWT, which is consistent with interaction via the

FFAT motif (Figure 7C).

To further validate enhanced association of LSG1 with

VAPBP56S (Figure 7C), we examined localization of EGFP-LSG1

and OSBP-EGFP with or without expression of VAPBWT or

VAPBP56S in HeLa cells. Importantly, VAPBP56S is known to

intrinsically aggregate. In cells not expressing exogenous VAP

proteins, EGFP-LSG1 displayed reticular ER localization, and

therefore binding to VAP, when expressed at low level and a

predominant cytosolic diffuse distribution at high expression

as seen previously with OSBP (Mesmin et al., 2013b) (Figure 7D).

This cytosolic distribution likely reflects VAP binding site

saturation in the ER membrane. Accordingly, VAPBWT overex-

pression strongly increased the association of EGFP-LSG1

and OSBP with the ER (Figures 7E and 7G). In contrast, expres-

sion of aggregation-prone VAPBP56S led to recruitment of

EGFP-LSG1, but not of OSBP, into the aggregates (Figures 7F

and 7H). Additionally, a pool of LSG1, but not of OSBP, co-

localized with the small VAPBP56S pool that remained diffusely

distributed throughout the ER (Figures 7G and 7H). These

observations confirm that the P56S mutation within the

MSP domain of VAPB reduced FFAT motif-dependent interac-

tions, while enhancing interactions with LSG1, which does not

contain an FFAT motif. These data demonstrate the potential

for BioPlex to inform and enhance focused study of individual

proteins.

DISCUSSION

High-Throughput AP-MS Complements Other Global
Interaction Mapping Approaches
To date, most near-global studies of human protein interactions

have relied upon Y2H, which is amenable to automation and

measures binary, and often direct, interactions. However, as

emphasized through BioPlex community analysis, many interac-

tions involve large protein assemblies whose detection is facili-

tated by AP-MS andmay not be detectable as binary complexes

due to complex structural interactions. An example is the Medi-

ator complex. AP-MS using 5 subunits (MED7, MED19, CDK8,

CDK19, and CCNC) identified nearly all Mediator subunits, with

each bait capturing 23–37 subunits (Figure S5B and Table S2).

In contrast, analysis of baits CCNC, MED4, MED18, MED20,

MED25, MED28, and MED30 with a Y2H library containing 16

Mediator subunits yielded 24 partners, only one of which was a

known Mediator subunit (Rolland et al., 2014). This reflects that

Mediator architecture involves co-assembly of multiple subunits

rather thanmodular assembly most easily captured via Y2H. The

ability of AP-MS to pinpoint primary and secondary interactions,

while simultaneously recognizing independent complexes with
likelihood of a non-random association between the two domains. This proces

hypothesis testing (Benjamini and Hochberg, 1995).

(B) Heatmap depicting significant domain associations involving domains of unkno

a 1% FDR. Labels indicate domain associations highlighted in (C)–(H).

(C–H) Interaction networks corresponding to associated domain pairs. Blue vert

whereas red vertices indicate proteins containing the associated domain; gray nod

multiple testing correction. Schematics depicting the domain structure of each c
shared components, is the cornerstone of our large-scale

network construction.

Network structures for multi-functional and dynamic protein

associations will emerge as a larger fraction of the proteome

is sampled as baits. Surprisingly, 86% of BioPlex interactions

have not been reported. This reflects (1) interrogation of many

poorly studied proteins; (2) AP-MS sensitivity, enabling detec-

tion of low abundance proteins; (3) and co-associated protein

identification as complex members. These factors are exempli-

fied by the SH2 and SH3 domain containing protein NCK2.

We identified 46 HCIPs for NCK2 (Table S2), 31 of which are

reported in STRING or GENEMANIA databases as proteins

that interact with NCK2 or NCK2-associated proteins. Of 15

NCK2-associated proteins found in BioPlex, but not in STRING

or GENEMANIA, C3orf10 and SHB are known to interact with

other NCK2-associated proteins, and SEMA6A, KIAA1522,

PEAK1, and SH3PXD2B contain proline-rich sequences of the

type known to associate with SH2 domains or other adaptor el-

ements. Thus, AP-MS provides a complementary approach to

binary interaction measurements for understanding interac-

tome connectivity.

Experimental Challenges of Global Interaction Mapping
via AP-MS
Although AP-MS has proven reliable for interaction mapping,

technical factors have important implications for BioPlex: (1)

some proteins require an intact C terminus for proper complex

assembly and may not provide reliable interacting partners

when C-terminally tagged. Conceivably, some of the 322 baits

that produced no interacting partners are affected by C-termi-

nal tagging. (2) Some baits may be toxic upon expression in

HEK293T cells. Because >93% of bait-expressing cell lines

have survived to harvest, only a small fraction of baits targeted

thus far are toxic. (3) 28% of proteins encoded by ORFEOME

8.1 do not represent the longest ORF in GenBank, which could

affect BioPlex in unpredictable ways. (4) Although bait ex-

pression levels vary, there was no correlation between bait

abundance and HCIP count (Figures S4D and S4E) (Sowa

et al., 2009). In addition, protein associations generally confirm

known bait localizations (Figure S7 and Table S5). Together,

these findings suggest that lentiviral expression has not unduly

biased our network. (5) Up to 1/3 of the genome encodes

membrane proteins. Previous studies have suggested that

extraction conditions can substantially affect membrane pro-

tein complex recovery (Babu et al., 2012). For several well-

studied membrane proteins, our pipeline captured largely

intact membrane protein complexes, including components

of complex I of the electron transport chain (Figure S7C) and

the VAPB complex (Figure 7A). However, for unstudied

trans-membrane proteins, further studies will be required
s was repeated for all domain pairs, and p values were adjusted for multiple

wn function (highlighted in red). Blue boxes label domain pairs that associate at

ices match proteins that contain the indicated domains of unknown function,

es match neither domain. p values were determined by Fisher’s exact test with

entral protein are displayed below each network.
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Figure 6. BioPlex Topology Aids Unknown Protein Characterization

(A) Network maps displaying interacting partners (gray) for 271 proteins assigned generic names based on chromosome and ORF position (red). Most are

uncharacterized.

(legend continued on next page)
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to determine whether extraction conditions allow retrieval of

intact complexes.

An additional consideration is that BioPlex incorporates only

one biological replicate for each bait. While technical replicate

LC-MS analyses address some sources of experimental error

and many quality control measures have been implemented,

variability in expression and affinity purification remains. Such ef-

fects would be best addressed with biological replicates, though

our project scope has rendered this impractical. Nevertheless,

as our network has grown to include AP-MS experiments target-

ing much of the human proteome, complexes have been purified

multiple times as each subunit is targeted via AP-MS. These

distinct affinity purifications tend to reinforce each other (e.g.,

Figures 3A, 4C, and 7A). In such cases, the confidence of

our final network is higher than a single IP of an individual bait

would be.

BioPlex Accurately Models the Human Interactome
Notwithstanding challenges, BioPlex appears to accurately

model the human interactome. The accuracy of CompPASS-

Plus is highlighted by its performance on known true and false

positives (Figures S2F and S2G). Furthermore, the reliability of

the resulting interaction network is most apparent from interac-

tions of well-studied baits (Figures 1B and 1C) and from the

extensive overlap observed with CORUM (Figures S2E and

3A). Additionally, subcellular co-localization analysis suggests

that AP-MS interactions achieve accuracies equal or higher

than previous studies and databases (Figure 3E).

Further evidence of BioPlex quality emerges from overall

network architecture. When subdivided into communities (Fig-

ures 4 and S5), 85% reflect functional or structural properties

of their constituent proteins and many correspond to known

complexes, including Mediator and histone acetyltransferase

complexes (Figure S5B), as well as RNA Pol II, the Signalsome,

and CNOT and COMM complexes (Figure 4C), among others

(Table S3). Network structure largely distinguishes proteasome

core and regulatory subunits (Figure 4C). More generally, pat-

terns of domain association (Figures S6 and 5 and Table S4)

and subcellular localization (Figure S7 and Table S5) match ex-

pectations. Many previously unreported interactions involve

understudied proteins whose properties may be revealed by

overlaying GO classification, Pfam domains, and subcellular

localization (Figures 6B and 6C and Tables S5 and S6). By

modeling the interactome in its entirety, BioPlex amounts to

more than the sum of its several thousand constituent AP-MS

experiments.

While BioPlex is drawn from a single cell type, interactionsmay

differ in distinct cell lineages and in response to specific stimuli.

Thus, the network is best viewed as a framework that can be

used for hypothesis generation and for design and interpretation

of targeted studies that address dynamic and genetic underpin-

nings of individual networks, as illustrated through our quantita-

tive analysis of the VAPB complex (Figure 7C).
(B) Expected subcellular localizations for 117 of 271 uncharacterized ORFs, ba

neighbors.

(C) Networks surrounding six uncharacterized proteins and listing enriched GO te

Fisher’s exact test with multiple testing correction. Red nodes, ORFs; green nodes
Conclusions
Utilizing the human ORFEOME, we have assembled the largest

AP-MS network of human interactions. Resulting from AP-MS

analysis of more than 10% of human proteins, BioPlex spans

over 1/3 of the human proteome and includes nearly 24,000

interactions, most of which have not been described. Viewed

individually or in aggregate, these interactions are a valuable

resource for both focused and systems-level biological re-

search. The network will also establish a foundation for future

efforts to expand interactome coverage and to explore network

dynamics and the effect of disease mutations on network

architecture.

EXPERIMENTAL PROCEDURES

An overview of experimental procedures is provided below. See the Supple-

mental Experimental Procedures for details.

Protein Expression and Purification

The sequence-validated Human ORFEOME v. 8.1 (Yang et al., 2011) was used

to construct a lentiviral library containing 13,000 ORFs bearing C-terminal

FLAG-HA epitopes. Following sequence verification and virus production,

HEK293T cells were infected and expanded under puromycin selection.

Upon harvest, cell lysates were clarified and baits captured with anti-HA

agarose prior to washing and elution with HA peptide. Clones will be distrib-

uted through the Dana Farber/Harvard Cancer Center DNA Resource Core

(http://dnaseq.med.harvard.edu/).

Mass Spectrometry

After purification, proteins were precipitated with 10% TCA and digested with

trypsin prior to technical duplicate analyses on ThermoFisher Q-Exactivemass

spectrometers. Using Sequest (Eng et al., 1994), spectra were searched

against human protein sequences from Uniprot (Magrane and Consortium,

2011) and common contaminants. The target-decoy method (Elias and Gygi,

2007) was used to filter each LC-MS dataset to a preliminary 1% protein

FDR. Additional filtering controlled the network FDR (Supplemental Experi-

mental Procedures).

Identification of Interacting Proteins and Network Assembly

An extension of CompPASS (Sowa et al., 2009) called CompPASS-

Plus was developed to distinguish interactors from non-specific back-

ground and false-positive identifications. Interactions were pooled across

AP-MS experiments to assemble BioPlex (Supplemental Experimental

Procedures).

Data Accessibility

BioPlex interactions were deposited into BioGRID in September 2014 and

are available for download and browsing at http://gygi.med.harvard.edu/

projects/bioplex. All 5,200 RAW files are also available. Both BioGRID and

the BioPlex website have been receiving quarterly updates to release addi-

tional AP-MS experiments to the community. At time of publication, data

from a total of 5,884 AP-MS experiments have been released with over

50,000 interactions.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and six tables and can be found online at http://dx.doi.org/10.

1016/j.cell.2015.06.043.
sed on localization enrichment among the protein’s primary and secondary

rms, Pfam domains, and subcellular localizations. p values were determined by

, neighboring proteins thatmatch the enriched term highlightedwith green text.

Cell 162, 425–440, July 16, 2015 ª2015 Elsevier Inc. 437

http://dnaseq.med.harvard.edu/
http://gygi.med.harvard.edu/projects/bioplex
http://gygi.med.harvard.edu/projects/bioplex
http://dx.doi.org/10.1016/j.cell.2015.06.043
http://dx.doi.org/10.1016/j.cell.2015.06.043


A

B

C E F G H

D

Figure 7. Quantitative Interaction Proteomics of the VAPB Network Reveals Differential Interactions for VAPB Variants Associated with ALS

(A) BioPlex interaction network for VAPA, VAPB and associated proteins. Dotted red lines: interactions reported by BioGRID; solid black lines: BioPlex

interactions.

(B and C) Overview of our TMT approach for examining how ALS-associated mutations in VAPB affect interaction partners. VAPB and its variants were stably

expressed in SH-SY5Y cells as FLAG-HA-tagged fusion proteins and subjected to AP-MS. Triplicate purifications were digested with trypsin prior to reaction with

(legend continued on next page)
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