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Genome sequencing and Variant Calling

Introduction to using NGS for Variant Detection
Sequencing Technologies, specifically lllumina
File Formats, FASTQ, SAM, BAM, vcf, bcf
QC steps

Variant Calling (data processing)

Computational Requirements
» Data Storage

» Processing Capacity

Brief Introduction to using NGS for microbiome analysis
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Introduction to using NGS for Variant Detection
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Human genomic diversity

All anatomically modern humans outside Africa descend from a set of
relatively small populations that left the continent less than 100,000 years
ago. Populations within Africa are much more genetically diverse.

Until ~500 years ago, there was relatively little admixture between these
populations except from events linked to a few large-scale migrations (e.g.
invasions of Europe by Central Asians).

The phenotypic and genotypic diversity seen among these populations
stems from two factors: genetic drift and selection based on reproductive
fitness. Cultural as well as environmental differences affect traits conferring
increased reproductive fitness.

Extensive genotyping has made it possible to correlate sets of genetic
variants (haplotypes) with very specific populations and to reconstruct the
ancestry of many living individuals.



Wandering humans

(New York
City)

SOUTHERN
EUROPE

THE HUMAN
JOURNEY
From global DNA
data, Genographic
and other scientists
have charted the
spread of humankind
out of East Africa.
The dates here

4 Generalized route Migration date
represent the first 30,000
arrivals in a region. p— years ago

Modern humans
migrated out of Africa,
gradually populating the
globe in relatively small
groups. Current human
genetic diversity mirrors
the routes and timings
of these migrations.

Source: National Geographic, 2009
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How diverse are we?
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How do human genomes differ?

Single nucleotide polymorphisms (SNPs):
At a given position in the genome, some haplotypes carry one nucleotide
while others carry another; the vast majority of SNPs are bi-allelic
It is believed that the vast majority of SNPs present at a minor allele

frequency of >5% worldwide have been characterized and deposited in
dbSNP, although this may not be true for some African populations

Copy number variants (CNVs):

Many regions of the genome have been duplicated during evolution, and
there are haplotypic differences in copy numbers between individuals;
CNVs can range between a few nucleotides and tens of thousands in size

Structural variants

Regions of an individual haplotype can be inverted, deleted, or

translocated relative to the reference genome sequence
O Most of these variants are not directly pathogenic!
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Phenotypic impacts

Most human genomic variants have no phenotypic impacts
Most of those that do have phenotypic impacts are either positively selected (i.e.
they confer a reproductive advantage) or neutral
Typically, they affect traits like height, facial features, hair or skin color, often
associated with ethnic origin

Some genomic variants have effects that are deleterious to health

Most of these are recessive: their effect is observed only if both alleles are
affected; these recessive alleles are often associated with specific ethnic
groups

Those that are dominant will either be selected against and disappear, or

have effects that minimally impact reproductive fitness (e.g., adult cancer)

This implies that the vast majority of alleles commonly found in the
population do not directly cause disease
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How to assess genomic diversity?

Methods are available to assess all three major sources of diversity:
SNPs, copy number variants, and structural variants
For SNPs, many different methods have been used:
Hybridization based, primarily SNP arrays
Enzyme-based methods, primarily oligonucleotide ligation and RFLP
Methods measuring physical properties of DNA
For copy number variants, the main methods are hybridization based

For structural variants, there are no universally accepted methods, but the most

reliable ones use partial sequencing of large clones (e.g. fosmids)

High-throughput sequencing should be able to detect all types of variants



HIGH-PERFORMANCE BIOLOGICAL COMPUTING

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Genome Sequencing

Next-generation
DNA sequencing

‘ ... CATTCAGTAG ... |
‘ .. AGCCATTAG ... ‘

— ‘ GGTAGTTAG ... | |‘_‘GGTAMCTAG ‘
| .. TATAATTAG .. | ‘ .. CGTACCTAG ... ‘
Genomic millions-billions of reads
DNA ~30-1000 nucleotides
Resequencing De novo assembly
*
Align reads to reference Construct genome sequence
genome and identify variants from overlaps between reads

Benjamin J. Raphael*

Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
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Genome Resequencing & Variant Detection

Pros
» Its per base cost is cheaper than Sanger sequencing
» Itis getting cheaper allowing for large studies to be executed

» |t makes truly Genome-Wide analyses feasible

cons

» The datasets are large and require relatively large computational

infrastructure for data storage and processing

» Some ambiguity in final results (but this can be overcome with

stringent methodologies) 1
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Human Reference Genome

hg19 — most commonly used

hg38 — the new version released at the end of 2013

“GRCh38 is the second major release of the human reference assembly
made by the GRC. This release affects chromosome coordinates, includes
261 alternate loci scaffolds and corresponding alignments that provide
chromosome context, and replaces centromere gaps with modeled
sequence. The GRC resolved 1008 issues.”

- http://www.ncbi.nIm.nih.gov/projects/genome/assembly/grc/human/

13
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Variant Calling — Types of Data

Whole Genome Sequencing (WGS)

» Fragment genomic DNA

» Sequence all the fragments

Exome Sequencing

» Capture DNA pieces that are known to be transcribed (exons) using
arrays with sequence similarities

» Amplify these pieces and sequence them

14
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Exome analysis
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Variant Calling — Types of Data

Whole Genome Sequencing (WGS)

»

»

Fragment genomic DNA

Sequence all the fragments

Exome Sequencing

»

»

»

»

»

Capture DNA pieces that are known to be transcribed (exons) using
arrays with sequence similarities

Amplify these pieces and sequence them
Most known exonic regions captured, but not all
Smaller dataset with concentrated information

Less sequencing necessary to reach the same depth of coverage
16
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Variant Calling — “Coverage” & “Depth”

Coverage — What % of the genome sequence is represented in the

sequencing data

Depth of coverage — How many times is every base in the genome

represented (on average)

Coverage 5 3 2

17
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Variant Calling — Depth of coverage

= 101 bp

13,630,540 bp 13,630,560 bp 13,630,580 bp 13,630,600 bp
| | | | | | | | |

DATATYPE
DATAFILE

NAVE

GTCCTGTAGCTGTACAAACATGCCGAAAGCCTCAAAACATGGCGCCCAGCCAAAAAGCTACTGCCATCCGCAATTGCAACTGTG

Ha--d-4--4-4= == [N
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Variant Calling — Depth of coverage

For WGS
» Haploid genome size => 3.2 Giga base pairs (3.2 billion)

» 90x coverage => ~160 Gbp

For Exome Sequencing
» Exome size => 33 Mega base pairs (33 million bases)
» 50x coverage => ~1.65 Gbp
» About 100 times smaller than WGS

» Depending on your method of capture, this number can vary
19
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Variant Calling — Depth of coverage

l— Fixed sequencing budget _i

Deep single-sample Shallower multi-sample

- _L —ve Sample 1 =~ o
_ _r Sample2-{_ "

Sample 1 - —L —& Sample 3 ~{~ _L 4—

20
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Sequencing Technologies

(lllumina)

21
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HiSeq 2500 Sequencing System

]!a RAPID RUN

50 - 600Gb 10 — 180Gb
2 — 11 days 7 — 40 hours
2 x 100bp max 2 x 150bp max

= =

Larger projects, Smaller projects,
fewer runs quick results

22
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MiSeq v3 Sequencing System

Reads: 250nt-300nt in length

Yield per run:
25 to 50 million paired-reads

Applications:
16s rRNA
Sequencing of small genomes
(bacteria, fosmids, BACs, virus)
Targeted sequencing (exome capture)
de novo transcriptome assembly

Turnaround time: ****FAST****
Flowcell (1 lane)

23
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lllumina Sequencing Workflow

Library Preparation Fragment DNA
Repair ends
_— Add A overhang
— .
o Ligate adapters
228 5” Purify

Hybridize to flow cell

Extend hybridized template
Perform bridge amplification
Prepare flow cell for sequencing

Sequencing
Perform sequencing
Generate base calls
J

Data Analy5|s

Images
Intensities
Reads

Alignments

24
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DNA

Al Fragment genomic DNA

4

P)

B. End repair and phosphorylate

4
P)
P, 2
A

C. Alaling

D. Ligate index adapter

. P5 Rd1 SP DNA Insert Index

Rd2 SP P7

E. Denature and amplify for final product

25
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lllumina Sequencing Technology:
Reads and BarCoding

Library from sample 1

L oone Single-read ..ot

Paired-end 550

Library from sample 2

— EE—— GCACCG =——
— E— CCTGGC e—
Computationally separated
—
based on barcode sequence
. ost-sequencin
Library from sample 3 P 9 9
— —— GGTCCA m—
— e CCAGGT w———
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Single molecule array
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Library Preparation ﬁ Cluster Growth \1j Sequencmg
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“Phred” quality (Q) scores

Each base call is associated with a quality score (Q)

Q =-10 x log,,(P), where P is the probability that a base call is

erroneous
A Q score of 20 => 1:100 chance that the base is called incorrectly

A Q score of 30 => 1:1000 chance ...

It is generally believed that the lllumina Q scores are accurate

28
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Variant Calling — Depth of coverage

For WGS
» Haploid genome size => 3.2 Giga base pairs (3.2 billion)
» 950x coverage => ~160 Gbp

» Assuming 100 nucleotide Paired-End reads this is equivalent to

800 million paired reads

» ~5 lanes of lllumina Hi-Seq per sample for WGS

30
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Variant Calling — Depth of coverage

For Exome Sequencing
» Exome size => 33 Mega base pairs (33 million bases)
» 50x coverage => ~1.65 Gbp

» Assuming 100 nucleotide Paired-End reads this is equivalent to 80

million paired reads

» <1 lane of lllumina Hi-Seq per sample for exome sequencing

31
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Variant Calling — Depth of coverage
r—— Fixed sequencing budget _l

Deep single-sample Shallower multi-sample
T e M sample2 < T w—_
Sample 1 = _g__ 1 Sample 3 = _L
- R e — Sample 4 ~{_ __*: $_
| y ) Y Variants \ v )
Found 3 variants total Found 5 variants total

* Higher sensitivity for variants
in the sample

* More accurate genotyping per
sample

* Cost: no information about * More total variants
other samples discovered 32

Sensitivity dependent on
frequency of variation

Worse genotyping
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Variant Calling — Depth of coverage

r—— Fixed sequencing budget _l

Deep single-sample Shallower multi-sample
- _$_ e Sample 1 =~ W

Sample 2~

Sample 1 _L _L Sanpied {_L

o

| ) Y Variants \ )
Found 3 variants total

Found 5 variants total

* Higher sensitivity for variants

» Sensitivity dependent on
in the sample

frequency of variation
Sensitivity is the measure of true variants
being identified

other samples discovered

33
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File Formats
(NGS)

34
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Formats associated with Variant Detection

Input: - Raw sequence (potentially billions of small strings)
Output: - A human ‘diff’ file

Intermediary files:
FASTA
SAM/BAM

Optional ones, depending on your needs:
* Known variants (VCF)
* Pedigree information (PED)
* Genotyping information (SnpEff database)

35
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Formats: FASTA

>unique sequence ID My sequence is pretty cool
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC

Deceptively simple format (e.g. there is no standard)

However in general:
Header line, starts with *>’,
followed directly by an ID,
... and an optional description (separated by a space)

Files can be fairly large (genomes)

36



HIGH-PERFORMANCE BIOLOGICAL COMPUTING

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Formats: FASTA

E.g. aread

>unique_ sequence ID My sequence is pretty cool
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC

E.g. a chromosome

>Groupl0 gi|323388978|ref|NC 007079.3| Amel 4.5, whole genome shotgun sequence
TAATTTATATATCTATTTTTTTTATTAAAAAATTTATATTTTTGTTAAAATTTTATTTGATTAGAAATAT
TTTTACTATTGTTCATTAATCGTTAATTAAAGATAGCACAGCACATGTAAGAATTCTAGGTCATGCGAAA
TTAAAAATTAAAAATATTCATATTTCTATAATAATTAAATTATTGTTTTAATTTAAGTAAAAAAATTTCT
AAGAAATCAAAAATTTGTTGTAATATTGAAACAAAATTTTGTTGTCTGCTTTTTATAGTAACTAATAAAT
ATTTAATAAAAAATTACTTTATTTAATATTTTATAATAAATCAAATTGTCCAATTTGAAATTTATTTTAT
CACTAAAAATATCTTTATTATAGTCAATATTTTTTGTTAGGTTTAAATAATTGTTAAAATTAGAAAATGA
TCGATATTTTCAAATAGTACGTTTAACTAATACTTAAGTGAAAGGTAAAGCGGTTATTTAAAATATTGAT
TTATAATATTCGTGACATAATATATTTATAAATAGATTATATATATATATATACATCAAAATATTATACG
AGAACTAGAAAATATTACAGATGCAAAATAAATTAAATTTTGTAAATGTTACAGAATTAAAAATCGAAGT 37




HIGH-PERFORMANCE BIOLOGICAL COMPUTING

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Formats: FASTQ

@unique_sequence_ ID
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC
+

=— (DD--DDD/DD5: *1B3&)-B6+8@+1 (DDB:DD07/DB&3 ( (+:2=8*D+DDD+B) * ) B.8CDBDD4DDD@ @D

May be ‘raw’ data (straight from seq pipeline) or processed (trimmed for

various reasons)
Can hold 100’s of millions of records per sample

Files can be very large (100’s of GB) apiece

"#$%&'"'()*+,-./0123456789:;<=>7?@ABCDEFGHI

12345678910 ... oo i e 2 40

38
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Formats: SAM/BAM

SAM - Sequence Alignment/Map format
SAM file format stores alignment information

Normally converted into BAM (text format is mostly useless for analysis)

Specification: http://samtools.sourceforge.net/SAM1.pdf

Contains FASTQ reads, quality information, alignment
information, other information about samples (meta data) etc.

Files are typically very large: Many 100’s of GB or more

39
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Formats: SAM/BAM

BAM — BGZF compressed SAM format
May be unsorted, or sorted by sequence name or genome coordinates
May be accompanied by an index file (.bai)

Makes the alignment information easily accessible to downstream
applications

Relatively simple format makes it easy to extract specific features, e.g.
genomic locations

BAM is the compressed/binary version of SAM and is not human
readable. Uses a specialized compression algorithm optimized for
indexing and record retrieval (bgzip)

Files are typically very large: 1/5 of SAM, but still very large |,
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Formats: VCF/BCF

VCF (Variant Call Format)
BCF — direct bgzip-compressed VCF format

Specification:

From the 1000 Genomes Project

http://www.1000genomes.org/wiki/Analysis/Variant%20Call

%20Format/vcf-variant-call-format-version-41

41
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Formats: VCF

##fileformat=VCFv4.1

##fileDate=20090805

##source=myImputationProgramv3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,1length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens”,taxonomy=x>
##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP ,Number=1,Type=Integer,Description="Total Depth">

##INFO=<ID=AF ,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2 ,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10@,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT ,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA0Q0O1 NAQ00O2 NA
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 010:48:1:51,51 110:48:8:51,51 1/
20 17330 . T A 3 qlo NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 010:49:3:58,50 011:3:5:65,3 0/
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 112:21:6:23,27 211:2:0:18,2 2/
20 1230237 . T . 47  PASS  NS=3;DP=13;AA=T GT:GQ:DP:HQ 010:54:7:56,60 010:48:4:51,51 @/
20 1234567 microsatl GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/

42
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QC steps to consider for
NGS-based Variant Calling

43
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QC steps

During and after library prep

* Is the quality and amount of genomic DNA reasonable?

» Is the quality and amount of prepared library good?

During sequencing and immediately after

* Are there too many or too few clusters?

» |s the sequencing proceeding as expected?

Before data processing
* Is the data quality good?

» If not, can getting rid of low quality reads or bases help?

44
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QC - During and after library prep

Is the quality and amount of genomic DNA

reasonable?
A 1% agarose gel can be run to check quality

* For estimating DNA amount, a nanodrop (spectrophotometric
method) can often be inaccurate due to various reasons and the

recommendation is to use the Qubit (fluorometric method)

Is the quality and amount of prepared library good?

« Perform a Bioanalyzer run to double check the size

» Perform a Qubit DNA assay estimate the quantity

45
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QC - During sequencing and immediately after

Are there too many or too few clusters?

« Perform one cycle of sequencing to test if all 8 lanes of the flow cell

have a good number of clusters (“Goldilocks” effect)

» This will impact final data quality!

|s the sequencing proceeding as expected?

* Monitor the stats on the monitor of the machine every few hours to

ensure there are no issues with the runs

46



HIGH-PERFORMANCE BIOLOGICAL COMPUTING

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

QC - During sequencing and immediately after

- Analysis e — Analysis — :
Extracted: 215 Called 214  Scored: 214 View Data ’ i | Extracted. 214 Called 214 Scored. 214 View Data
|
:

%>Q30

Fluidics (>)

[W] VSRM

Images Fluidics

9000F
214 #215 #216 Ll #210 21 #212 #213 #214 #215 #216
2 050 2 2 212 #2 2 2
2 6000
2 5000 e
/ 7\ Lol S <000 3
f \ \ f = 3000 g \
\ \ § 2000} E | bod
s \; 1000+ ,f \ e ‘~—.,
20 40 60 80 100 120 140 160 180 200
Cycle Fri Mar 7 . <]
Configuration N > Configuration
Read Type : Paired End Indexing Run Read Type : Paired End Indexing Run

|| Read Cycles - 1517 ()| 151 Read Cycles - 1517 (1) | 151
|| Output Folder - Z:\140306_SN7001155_0245_AH8JNRADXX Output Folder - Z'\140306_SN7001155_0246_BHSJVSADXX

€8 @3 Flow Cell B (H8JVSADXX), Cycle #216, Imaging, Bottom Surface, Lane 2, Swath 2 - X = 79.64413 Y = 39,636, Channels A, ¢
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QC - Before data processing

FastQC to check quality scores and other metrics of the FASTQ
data file

Trimmomatic to remove low quality bases from either end and

choose to keep only reads with enough nucleotides remaining
Trimmomatic to remove any leftover adaptor sequences

FastQC to check the metrics after trimming
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QC - Before data processing

Before quality trimming After quality trimming

Quality scores across all bases (Sanger / lllumina 1.9 encoding) Quality scores across all bases (Sanger { lllumina 1.9 encoding)
40 — 40 I
38 [ 38
; an S ; T T .
24 Ji 24 |
32 / 32 ll l
30 ] 30 i
28 28
26 26
24 24
22 22
20 20
18 18
16 ] 16
14 14
12 i 12
10 10
8 8
[ [
4 4
2 = 2
o 1 2 3 4 5 6 7 8 9 15-19 25-29 35-39 45-48 55-58 65-69 75-79 85-89 95-99 0 1 2 3 4 S 6 7 g 9 10-14 20-24 20-34 40-44 50-54 60-64 70-74 80-84 90-94
Pasition in read (bp) Position in read (bp)
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Variant Calling Data Processing Steps
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Phase 1: nGS data processing  Phase 2: variant discovery and genotyping Phase 3: integrative analysis

Typically by lane Typically multiple samples simultanaously but can be single sample alone
Sample 1 . Sample N Raw Raw Raw
reads reads indels SNPs Svs
J

External data

Input Raw reads

l

Mapping

Knc—wn
F'edlgrees variation

Poputon Known
structure genotypes

1

realignment

Duplicate /| Variant quality ||
marking | recalibration ||

! i

i 1

| |

I Structural : I ‘ i
Base quality variation (SV) E Genotype |
recalibration | refinement |,
| —

Analysis-rea
Output ?riaﬂs ayl ...

Raw vanants f a===a«a« Analysis-ready
variants

Figure 1 Framework for variation discovery and genotyping from next-generation DNA sequencing.
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Calling variants with the GATK

GATK

“The Genome Analysis Toolkit or GATK is a software package developed at the
Broad Institute to analyse next-generation resequencing data. The toolkit offers a
wide variety of tools, with a primary focus on variant discovery and
genotyping as well as strong emphasis on data quality assurance. Its robust
architecture, powerful processing engine and high-performance computing

features make it capable of taking on projects of any size.”

- http://www.broadinstitute.org/gatk/
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Calling variants with the GATK

GATK provides a good infrastructure and a guide to best practices to

be employed for variant calling

It utilizes several open-source tools at various steps, along with GATK-

specific tools and scripts
Can use both exome and WGS data for variant calling

GATK takes advantage of the concept of parallel computing to speed

up the pipeline
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Calling variants with the GATK

Parallelism

process

threads

Example of a Node on a cluster (UNIX)

* 1 Dell PowerEdge R620 Node

» 24 Intel Xeon E5-2697 @ 2.7GHz CPU Cores
« 384 Giga Bytes of RAM
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Calling variants with the GATK

Parallelism

process

i I threads | ‘

(N A0 dh b 48 dh 4B 4B 40 (48 A48 40 %‘\ (N A1 dh 40 (48 Ah dh dh 40 4D

95
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Calling variants with the GATK

GATK provides a good infrastructure and a guide to best practices to

be employed for variant calling

It utilizes several open-source tools at various steps, along with GATK-

specific tools and scripts
Can use both exome and WGS data for variant calling

GATK takes advantage of the concept of parallel computing to speed
up the pipeline
You can implement this type of a set up outside of the GATK constraints
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Calling variants with the GATK

Data Pre-processing >> Variant Discovery >> Preliminary Analyses

[__RawReads | veuad AnclysisReady ... Analysis-Ready SNPs
[ 5 Reads 5 Variants & Indels
( JointVariant Calling | Genotype
: i : Refinement
[ J . = : Functional
Indel Realignment § ey [ ] [ § Annotation
' : [ e SN.Ps Indlels :
[ Base Recalibration ] : 1| [ : M
¢ § Variant Recalibration ‘ g [ A o ]
[ RR Compression ] : (separately per variant type) : look good?
[ | ! ,A,
Analysis-Ready : ) :
[ Reads ] ....... Fllbred [ sNPs ] [ lndels ] ....... ® ©
Variants troubleshoot use in project
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Calling variants with the GATK

Data Pre-processing

[ Indel Realignment J

.

( Base Recalibration ]
+

[ RR Compression }
v

Analysis-Ready
Reads
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Calling variants with the GATK

Data Pre-processing

=)

Mapping or Aligning raw reads to reference

genome is usually done with BWA (Burrows-

Raw Reads

| ot e
Map To Reference
Mark Duplicates

Wheeler Aligner)

{

Duplicates are marked using Picard

Very important steps that set up the quality of the Indel Realignment
'

variant calling [ Base Recalibration |
'

Tools used for these steps are external to GATK [ RRCompression |
'

Analysis-Ready
Reads
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Calling variants with the GATK

Mapping

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

|||||||
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Calling variants with the GATK

Mapping
Theoretically this is a simple step to determine where the read
matches the reference genome
But, there are several issues to be considered in practice
 Mismatches due to a variant or a sequencing error
« Aread mapping to more than one location (repeats)
* Mapping Quality of the read depends on these factors
The FASTAQ files are often “chunked” into smaller files for this step,

and remerged after alignment
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Calling variants with the GATK
Marking duplicates (de-duplicating)

% =sequencing error propagated in duplicates

=

Reads
> mapped to
reference

.
‘

\ After marking duplicates, the GATK will only see :

FP variant call
(bad)
(FP=False positive) B e T —— ]
oe— O e

... and thus be more likely to make the right call 62
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Calling variants with the GATK

Data Pre-processing — T nnnn — TN
=iEciiii: mmm ) S22

‘
(4
Map To Reference
Mark Duplicates
=

Indel Reallgnment

v

[ Base Recalibration ]

Original SAM Ordered BAM

{

De-duplicate

=

$ = S.SiSiSE — i HHHH
(CRRGomeression ) |ff| (| i=212i2125 S =HHHHE
; =:2iEisi= 4@ Addreadgroup m i=izizizisis
[ =HEHHHES information =HHHHE
Reads of || S——tm i - — — .-

Final BAM ' Dedupped BAM
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Calling variants with the GATK

These steps are computationally expensive, and
data are usually split into smaller “chunks” prior to

mapping and marking duplicates.

If multiple samples are being processed, these

steps are performed separately for each sample

These steps set up the stage for good quality calls

« All later steps assume that reads are placed in the right

location and represent that region of the genome

* Duplicates originate mostly from DNA prep methods and

cause biases that skew variant calling results

Data Pre-processing

Raw Reads
eI T,

Map To Reference

Mark Duplicates

g
Indel Realignment
B
[ Base Recalibration ]
v
[ RR Compression ]
B

Analysis-Ready
Reads

{
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Calling variants with the GATK

[ Raw Reads ]

Data Pre-processing
Map To Reference
Mark Duplicates

(s

[ Base Recalibration ]
+

( RR Compression )
v

Analysis-Ready
Reads

Indel Realignment

There are 2 steps to the realignment process:

Determining (small) suspicious intervals which

are likely in need of realignment
Running the re-aligner over those intervals

Can use known sites to aid in the realignment

All samples can be merged together and then separated by
chromosome and data for each chromosome can be processed

separately from this point on 65
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Calling variants with the GATK

Indel Realignment
Before realignment
11 | 1
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Calling variants with the GATK

Indel Realignment
Before realignment After realignment
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Calling variants with the GATK

Indel Realignment

Data Pre-processing

[ Original BAM file

[ Raw Reads ]

Map To Reference
Mark Duplicates

IR

[ Base Recalibration ]

RealignerTargetCreator

[ Intervals (.intervals) ]

¢ IndelRealigner
[ RR Compression ]
v
[ Analysis-Ready ]
Reads .
Realigned BAM file ]
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Calling variants with the GATK

Base Recalibration

Data Pre-processing

Start with reads aligned to reference genome (.bam
file)

[ Raw Reads ]

Map To Reference
Mark Duplicates

Estimate the likelihood of a biased quality score

Following criteria are considered for estimating

[ Indel Realignment ]

bias:
(" *  Reported quality score
[ RR Compression ) « Machine cycle on sequencer
_‘ * Dinucleotide context
[Analysls-Ready ]
s : - Down-weighting or remove duplicate clones

Remove the estimated bias 69
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Calling variants with the GATK

Base Recalibration

[ Original BAM file ] [ + Known sites ]

BaseRecalibrator

[ Recalibration table J

PrintReads

Recalibrated BAM file
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Calling variants with the GATK

Base Recalibration

The step removes and systematic biases the creep in during data
generation and the previous data processing steps

40
]
Ay
A

= Original, AMSE = 2.468

- * Original, AMSE = 2.60%
— Recalivrated, AMSE = 0.083

* Recalivrated, AMSE = 0.088

30

~
Y

!

Empirical Quality
20
1
>
k=]

10
$

’... * Origingl, RMSE = 5634
* Hecaliprates, RMSE = 0.135

Accuracy (Empirical — Reported Quality)
0
1

Accuracy (Empirical — Reported Quality)
0

1
0 10 20 30 40 -100 -50 0 50 100 AA AG CA CG GA GG TA T
Reported Quality Machine Cycle Dinucleotide
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Calling variants with the GATK

Reduce Reads Compression

Data Pre-processing

Reduce the size of the BAM file by removing
non-essential information

[ Raw Reads ]

Map To Reference

Distinguish between consensus and variable

Mark Duplicates

[ Indel Realignment ]

regions, and remove consensus information

: Down-sample coverage in variable regions

[ Base Recalibration ]

RR Compression )

[A"a".’;’iﬁ;";"“y] when working with multiple samples

A set of samples are co-reduced to ensure
consistency (and hence, effective comparisons)
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Calling variants with the GATK

Reduce Reads Compression

original
BAM variable
regions
reduced
BAM
homozygous consensus
Y8 reads 73

variants
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Calling variants with the GATK

Reduce Reads Compression

Data Pre-processing

Original BAM file

[ Raw Reads ]

Map To Reference
Mark Duplicates

ReduceReads

[ Indel Realignment )

4
[ Base Recalibration ]

RR Compression )y

[ Analysis-Ready ]

[ Compressed BAM file ]

Reads
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Calling variants with the GATK

Calling Variants (finally)!!

Variant Discovery

{o= HEWNE

[ Joint Variant Calling ]
+

Raw
[Varlants SNPs ] Indels

v +

Variant Recalibration
(separately per variant type)

' .

R SNPs ] [ Indels ] i

[ Filtered
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Calling variants with the GATK

Calling Variants

Variant Discovery

{z=e @E W)

r Several steps have been taken to reduce the

C  vontvariantcaiing 1) NOise with both SNPs and indels

Discovery of real variants buried in the noise

_ ] The BAM files going into this portion of the
R e [ SNPs ] [ Indels] . . ) )
| pipeline are “cleaner” and reduced
Variant Recalibration ‘
(separately per variant type)
' ' All samples can be merged together and then separated by
Filtered o chromosome and data for each chromosome can be processed
[Vaﬂa il [ SNPs ] [Indels] P
separately from this point on
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Calling variants with the GATK

Calling Variants

* UnifiedGenotyper * HaplotypeCaller

Call SNPs and indels Call SNPs, indels, and some
separately by considering SVs simultaneously by
each variant locus performing a local de-novo
independently assembly

— Accepts any ploidy — More accurate, especially

— Pooled calling for indels

— High sample numbers — Will eventually replace UG

7
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Calling variants with the GATK

Unified Genotyper (UG) -

UG calls SNPs and indels separately by considering each variant

locus independently
Currently, this program runs faster than HaplotypeCaller

UG is going to be phased out in favor of the HaplotypeCaller
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Calling variants with the GATK

HaplotypeCaller -

Call SNPs, indels, and some SVs simultaneously by performing a

local de-novo assembly (deBruijn graph-based assembly)
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Calling variants with the GATK
HaplotypeCaller

A Read Layout B Overlap Graph

.+ GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

NKXOQDP X "D
o0 se oo se se ee B U N
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Calling variants with the GATK
HaplotypeCaller

ac® v
[ Human hg19 # o2 B ©1215296230-15.2%306 G0 B <« » & 0 %X O = RO g
EJ Tane
;%: e f nu-ln.. 1 cu-;-- " -u-lu--' \ »u-lnn -uulu-. A -uul-- ' -u—l--
& 7= N
NA12878 —— i b =
original o Multiple caller artifacts
€ - e - Short read
read data i ¢ that are hard to filter I ¢
o ] out, since they are well alignmen
i : 7 ; < ; supported by read data
- — :
i
i
| c -
Haplotype =
Caller —
(validated) : Assembled data
o H re-alignment
\’4
Seqowce - Y:_VLC.:‘ATAAVAVaCatitACJC,I,YV_VA‘,VAA.\YIA.YAVaCAIAtACaCAIuYA_V,VaYJY.\CsVJVaaI-zVAV.
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Calling variants with the GATK

Variant Quality Score Recalibration
Variant Discovery

@mllJm

J

The variant calling process is relatively

permissive, and produces many false positives

! . L
("Joint Variant Calling ) The variant recalibration workflow compares

.

[c:::anu [ SN.PS ] [ Indels 1

properties of novel predicted variants to those of

variants known to exist in the population (from

Variant Recalibration dbSNP data base)
(separately per variant type) '

: Basically, this step filters out likely false
[ Kiliored [ SNPs ] [ Indels] -

Variants

positives producing a high-quality set
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Calling variants with the GATK

Variant Quality Score Recalibration

{ Original SNPs + original Indels ]

VariantRecalibrator
Indels will be left untouched

First pass in SNP mode,

ApplyRecalibration

Recal SNPs + original Indels ]

Second pass in INDEL mode, VariantRecalibrator

SNPs will be left untouched J

ApplyRecalibration

Recal SNPs + Recal Indels J
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Calling variants with the GATK

Variant Quality Score Recalibration

More
Bias

Evidence for Strand Bias

Less
Bias

-1200 -710 -190

-1700

J

HiSeq: training on HapMap

* SNP found in dbSNP

Likely dbSNP e SMP found ol Hapiieg® she

errors

...........

Heterozygous

Homozygous
variants

Gaussian mixture
model fits

T T T
L) 1" 18

B

More
Bias

Ewvidence for Strand Bias

Less
Bias

§

-1200 -710 -190

-1700

HiSeq: evaluating novel variants

1 * fitered novel SNP

44 n 18

Variant Qualty Score / Depth
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Catalogs of human genetic variation

The 1000 Genomes Project
http://www.1000genomes.org/
SNPs and structural variants

genomes of about 2500 unidentified people from about 25 populations around the world will
be sequenced using NGS technologies

HapMap

http://hapmap.ncbi.nlm.nih.gov/

identify and catalog genetic similarities and differences
dbSNP

http://www.ncbi.nlm.nih.gov/snp/

Database of SNPs and multiple small-scale variations that include indels, microsatellites,
and non-polymorphic variants

COSMIC
http://www.sanger.ac.uk/genetics/CGP/cosmic/
Catalog of Somatic Mutations in Cancer
TCGA
http://cancergenome.nih.gov/

The Cancer Genome Atlas researchers are mapping the genetic changes in 20 selected
cancers 85
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Variant Calling Data Processing Steps

>> Preliminary Analyses

...{ Analysis-Ready = SNPs ]
Vaﬂants & Indels
Refinement
Functional

[Variant EvaluatlonJ

look good?

g A

troubleshoot use in project
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Calling variants with the GATK

Preliminary Analyses

Analysis-Ready SNPs
*1 variants & Indels

Functional
Annotation

[ Variant Evaluation ]

look good?

o /0o

troubleshoot use in project

Genotype Refinement

Improve the genotype assignments and

inferring haplotypes for your samples

Infer phasing information based on population
analyses using familial information or random

population information

Critical in population genetics studies to

determine haplotype structure
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Calling variants with the GATK

Genotype Refinement

chr1
PEEE; ;QEEE ng P!; I’;E l'!!! P!!E P!!E P!!! ql1 q;; q!!s ‘I;5 Q;E ‘IEa ‘I!!5 'IE;5 5! a!g 5
g 79 bp
< 18,633,900 bp 18,633,910 bp 18,633,920 bp 18,633,930 bp 18,633,940 bp 18,633,950 bp 18,633,960 bp 18,633,970 bp
;’S 1 1 | | | | I 1 | | | | | 1 1 l
)
E IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

No mutations

‘4 from mother - O

Haplotype #1
from father

| Daughter

NA12891 b37+decoy WGS Cove|

|| Father

NA12892 b37+decoy WGS Cove|

Sequence - GCTCTAAGAACTTTACACACATCGACTCATCTATCCTCACAATGTTACAACGAAGCAGGTCCTGTTATGATTTCTATTT

RefSeq Genes 1GSF21 88

|| Mother -
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Calling variants with the GATK

Functional Annotation

Preliminary Analyses
Which gene is affected?
.. Analysis-Ready SNPs . . ] )
Variants . hcn Is the change in a coding or non-coding region?
g Does the mutation create synonymous or a non-
'
it synonymous change?
Annotation
[ Variant Evaluation ]
look good?

o /0o

troubleshoot use in project
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Calling variants with the GATK

Functional Annotation

snpEff (non-GATK)

Add functional annotations to a set of variants

SnpEff annotates and predicts the effects of variants on
genes (such as amino acid changes).

SnpEff annotation gives the following information:
Is the variant genic or intergenic, exonic or intronic, in a UTR?
Change caused by variant is synonymous or non-synonymous?
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Calling variants with the GATK

Functional Annotation

[ Transcript database

snpEff VCF file ]

[ Original VCF file

VariantAnnotator

[ Annotated VCF file ] 91
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Calling variants with the GATK

Variant Evaluation

Preliminary Analyses

* When compared to known variant databases how

{ i 2’7,',’;,3 ] do the basic statistics compare?
It is very important to compare apples to apples at
G :
e DU | e st
[Azi‘.ﬁt:é‘:,,] Compare to a matched dataset
Pick the database or a subset of a database

y ’ derived from the population closest to your

S— population of interest
* How many of them are unique between the

© samples or groups?

troubleshoot use in project 92
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Variant Calling Data Processing Steps

Data Pre-processing >> Variant Discovery >> Preliminary Analyses
[__RawReads | veuad Anclysis-Ready ... Analysis-Ready SNPs
5 Reads 5 Variants & Indels
: [ Joint Variant Calling ] : Genotype
: ! : Refinement
[ J H . : Functional
Indel Realignment § Ao [ ] [ ] § Annotation
i : [ e SN.Ps lndlels :
( Base Recalibration J : | | : \
¢ § Variant Recalibration ‘ g ( o ]
[ RR Compression ] : (separately per variant type) : look good?
' ! ! ,/\,
Analysis-Ready : ) :
[ Reads ] ....... Fllhred [ sNPs ] [ lndels ] .....0. ® .© !
Variants troubleshoot use in project
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A complex puzzle...
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Variant Calling — Interpretation

Fundamental problem in biology: how does genotype inform phenotype,
and what other factors (e.g., environmental, epigenetic) are involved?

For some phenotypes, e.g., those linked to ethnic differences, or highly
penetrant Mendelian traits, we can predict phenotype from genotype

quite accurately

For many “complex” traits where we know that there is a strong
inherited component (e.g., from twin and family studies), we still have a
ways to go

Two common approaches:

» Genome-wide association studies (GWAS)

» Integrated analyses 95



GWAS - basic principles

B AA/AC
Cases 96
Controls 51

781

31’]:

g 171

H 1’4[

logyglp-val

Controls
CC
20 Odds ratio = 6.36;
X2 p-value = 1.662e-10
75

‘ . :
P Bl v oy z SR Bjys gy it y s
Jnn T T R REL R
1 3 5 7 9 " 13

15 17 19 21 X M
; 1

chromosome

(A) In a case / control study, genotypes are
determined for all cases and controls

(B) For each allelic variant, the distribution of
alleles between cases and control
groups is measured, and deviation from
a random distribution calculated

(C) The X2 p-values and positions in the
genome for each of the measured loci
are displayed in a Manhattan plot. The
Figure shows two genomic regions
enriched for variants with highly
significant distribution biases that
putatively contain causal variants for the
trait being analyzed.

Konrad J. Karczewski'?, Roxana Daneshjou®?, Russ B. Altman?3*

1 Program in Biomedical Informatics, Stanford University, Stanford, Califomia, United States of America, 2 Department of Genetics, Stanford University, Stanford, Califernia,
United States of America, 3 Department of Medicine, Stanford University, Stanford, California, United States of America



GWAS - extension

Detection of interactions:

Assumption is that phenotype is influenced by more than one allelic
variant, and that the effects are synergistic (more than additive)

|deally involves the calculation of the effect sizes of all combinations
of observed alleles, and a comparison to their individual effects

Computationally very challenging depending on the number of
variants
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Integrated Analyses

12 tumor types

Glioblastoma (GBM . . i
) Omics characterizations

Lung adenocarcmnoma
(LUAD) \ -
Breast (BRCA)

Ovarian (OV)

Kidney (KIRC) Mutation
4
") Copy number
Endometrial (UCEC) E
% Gene expression
Thematic a DNA methylation
pathways :
MicroRNA
\ .1/ RPPA
" Clinical data
./ & &
-‘; ‘:"/
\ | ".'\s ale
. S
Xl
o' . *
J’ 1 ]
a7 9 i
ot \‘5«

Source: The Cancer Genome Atlas, TCGA
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Genome sequencing and Variant Calling

Introduction to using NGS for Variant Detection
Sequencing Technologies, specifically lllumina
File Formats, FASTQ, SAM, BAM, vcf, bcf

QC steps

Variant Calling (data processing)

Computational Requirements
» Data Storage

» Processing Capacity

Brief Introduction to using NGS for microbiome analysis
100
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Computational Requirements

Data Storage Requirements

Processing Capacity Required
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Data Storage Requirements

Data Pre-processing
[ Raw Reads > PE FASTQ 5
~10-15X coverage e
i > PEFASTQ SAM ~300G8
Q
3 — Sorted BAM, de-dupped
2 el 2 Large SAM BAM, BAM with read ~450GB
groups added
[ Indel Rea:lgnment ]:‘::::;> Large BAM Realigned BAM ~600GB
( Base Recalibration ) > Realigned BAM AN Wi Tegelibrated ~750GB
-
: y BAM with
RRC ~
[ omfressuon / >recalibrated quality Reduced BAM 810GB
Analysis-Ready
Reads .
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Data Storage Requirements

Variant Discovery

Input files Output files Cumulative Size
.. ] ~
{ Reduced BAM (text files) 820GB
 J
v Small vcf files More small vcf files
[ Joint Variant Callinvg{ (text files) _ (text files) 825GB
+
Raw
[Varlants SNPs [ Indels ]
v ' 7

(separately per variant type)
' '

[Flltered [ SNPs ] [ G ] o

[ Variant Recalibratlor\\/

>

Variants

A
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Data Storage Requirements

Grand total for the first 2 parts of the pipeline: > 0.8 TB

Oh wait, that’s per sample for 15x coverage!!

And that’s only the first phase of the pipeline and it is a middle-case

scenario for WGS data!!

50x Exome = 30GB raw FASTQ + everything else
90x WGS = 350GB raw FASTQ + everything else
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Data Storage Requirements

Storage and data backup plans should be ready before you get the raw
FASTQ data from the sequencing center

Maintain a good documentation of steps as well as data organization; this
is especially crucial for a large population analysis

Remove any files that are easily re-creatable; e.g. once you have the
BAM file that has been realigned and recalibrated for quality scores, you
can maybe afford to lose the 2 previous versions of the BAM files (I'd save
the original BAM)

Compress any “compressable” files, e.g. vcf to bcf or SAM to BAM

Compress (tar) everything prior to archiving (long-term storage)
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Computational Requirements

Data Storage Requirements
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Parallelism

process

i I threads | |

scatter
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Parallelism

Some software can be run in a “multi-threaded” mode, wherein the

parallelization is built in (multiple cores)

Parallelization when feasible is great, but this is not always the

case. For some steps there is no efficient way to parallelize...

There are ways external to the software that can be used to
optimize efficiency and are not mutually exclusive

« Example 1 - align smaller chunks of the fastq files to the genome

simultaneously

« Example 2 - separate out all the aligned data by chromosome, and run

the downstream analysis per chromosome o
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Processing Requirements

Step Hours on 1 core Hours on 1 core
50x WGS 50x Exome
QC 10 0.5
Alignment 55 to 111
. 320
(para”ehzable) (depending on the aligner used)
Sorting, de-dupping, read group addition
: 35 2
(partly parallelizable)
Indel realignment + Recalibration
(Forcibly parallelizable, by separating into 69 6
chromosomes)
Variant Calling (UG)
(Forcibly parallelizable, by separating into 40 5
chromosomes)
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Processing Requirements

Step Hours on 1 core Hours on 1 core
50x WGS 50x Exome
o 10 05
Alignment 320 55 to 111
(para”elizable) (depending on the aligner used)

Sorting, ( When using GATK or a similar pipeline and making use of parallelization
for efficient processing, the memory requirements are fairly low, 10 GB per |

process is deemed to be enough.
Indel realignment + Recalibration

(Forcibly parallelizable, by separating into 69 5)

chromosomes)

Variant Calling (UG)
(Forcibly parallelizable, by separating into 40 5
chromosomes)
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A brief introduction to using NGS for

microbiome analysis
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Microbiome (in the human context)

For every single human cell there are at least 10 microbial cells in or on our

bodies making up ~500 grams of your body weight

Joshua Lederberg coined the term “microbiome, to signify the ecological
community of commensal, symbiotic, and pathogenic microorganisms that

literally share our body space” (Scientist 2001)

Prior to high-throughput sequencing, microbiome analysis was restricted to

microorganisms that could be cultured in the lab

Sampling has been performed from various parts of the human body, on the

surface and from within the body cavity
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Microbiome (in the human context) (contd.)

Why study the microbiome?

To understand the contribution of this large population of cells on the

human body
To study if and how it impacts disease states

To assess the impact of environmental factors on the microbiota and

downstream phenotypes
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Methods to study the Microbiome

To study a specific microbiome (e.g. intestinal, vaginal, feet etc.), you can

isolate and study the DNA or the RNA from the environmental samples

DNA-based methods

« Taxonomic diversity by sequencing variable 16S regions

« Shotgun sequencing of the whole metagenome
—  Functional information, what genes are enriched in the microbiome?

—  Taxonomic diversity

RNA-based method

« Shotgun sequencing of the whole metatranscriptome

—  More direct functional information about gene expression
114



Two major DNA-based methods

Morgan XC, Huttenhower C (2012)

Chapter 12: Human Microbiome Analysis.

PLoS Comput Biol 8(12)
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The 16S-based ) = — =)

approach
DA IO AR A NSNS
MDA DAL
WIS IS
XA AKX A XXX AL

Extract DNA

Microbial community
sample

Extract DNA
DX AR SR A IXADA
MDA DI ADEADIK
XAXA. MR

DRSO SOR A A DRI

The shotgun

Amplify and
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Group similar Use database to

sequence 16S rRNA sequences into OTUs identify OTUs

Community composition: Which organisms are present?

Abundance

OTU

Relative abundance
of OTUs in
community

metagenomic ) community

approach

Variant sequences and
SNPs
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OTU phylogeny
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SOX AKX
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Sequence Community function:
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DNA
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identify sequences

Functions
Relative abundance of gene
pathways in community
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Two major DNA-based methods

To study the DNA isolated from environmental samples to assess the
diversity of microbial community in that environment

Isolate and sequence the DNA that encodes 16S ribosomal RNA

« 16S ribosomal RNA (DNA) is very well conserved among bacterial and archaeal
species, with small sections of “hypervariable” regions (e.g. V4, V6 etc.)

« Because of the highly conserved areas outside of these hypervariable regions,
common or universal primers can be designed to amplify the variable DNA

« The sequence of the hypervariable regions can be utilized to characterize the
seqguence into taxonomic groups

« Thus the basic output of such an analysis is OTUs or Operational Taxonomic Units
or phylotypes

* Well-developed methods available for this analysis "6
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16S-based approach

- GA;AgGAGAgGCAT
—— s <
—i— onp BEEEC < NCBI
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approach —— SRR myRDP
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NN s — Ol e Sl
XCOTK SOCOOCK i .
Amplify and Group similar Use database to

NS S

s~ s~~~ ~ - sequence 16S rRNA sequences into OTUs identify OTUs
Extract DNA

Community composition: Which organisms are present?
Variant sequences and

SNPs
Microbial community & GATTACA
sample s GATTACA
S GATTTCA
b 00 G 3
o0 am® 00 < GATTTCA
;b o O D OTU GATTTCA

Relative abundance OTU phylogeny

of OTUs in
I community u

Morgan XC, Huttenhower C (2012)
Chapter 12: Human Microbiome Analysis.
PLoS Comput Biol 8(12)
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Two major DNA-based methods

To study the DNA isolated from environmental samples to assess the
diversity of microbial community in that environment

Shotgun sequencing of the whole metagenome

« True metagenomics, since you are potentially looking at the whole genomes of the
microbial community in the sample

« This method also enables taxonomic diversity analysis

« Often environmental constraints result in selective metabolic processes being
enriched in a given environment and this method can enable gathering functional
information of this nature

« Methods are still being developed and there are many opinions about right and

wrong 118
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Shotgun sequencing — metagenomics

Community composition: Which organisms are present?
Variant sequences and
SNPs
Microbial community § e
sample s zATTACc:
= ATTT
L JIX 3 I I GATTTCA
o0 @D 00 <
T YYY ) oTuU GATTTCA
Relative abundance OTU phylogeny
of OTUs in
l community

Extract DNA

XAHOHALKIE KKK I A A A reference genomes
The shotgu.n Sequence Community function:
metagenomic ) community What can the community do?
approach DNA
Q
| I
KEGG 3
=Ny SEED 3
BLAST <

Functions
Relative abundance of gene
pathways in community

Use database to
identify sequences

Morgan XC, Huttenhower C (2012)
Chapter 12: Human Microbiome Analysis.
PLoS Comput Biol 8(12)

Filter out host DNA by alignment to

the host genome [iots of low-memory processors]

2 alternatives for filtered short reads

1.

Align the remaining short-reads to various
databases to identify taxonomic and
genic information [iots of low-memory
processors]

Alternatively, assemble the short reads
into longer pieces or contigs before
aligning to the databases. [at least one high-

memory processor + lots of low-memory processors]
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Two major DNA-based methods

Broad taxonomic classifications can be made with both the methods

Diversity plots of OTU composition/profiles provide key insight-

18
16

Alpha or within-sample diversity

og)
o

S

1

508

E06

& 04
o~z .

0

Samplel Sample2 Sample 3

Beta or between-sample diversity
Sample 1 ’A%A‘ Sample 3

Sample 2

The whole-genome shotgun approach will also provide genic, i.e.

functional information (metabolic process enrichment, etc.)
120



HIGH-PERFORMANCE BIOLOGICAL COMPUTING

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Metatranscriptomics

To study the transcriptome (RNA) isolated from environmental samples.
Shotgun sequencing of the metatranscriptome

How to sequence the RNA component of a sample?

» Treat the sample extremely carefully to prevent degradation (GIGO)

Library preparation involves isolating the RNA you are interested in (removing anything that
looks like ribosomal RNA)

Convert the RNA to DNA using reverse transcription

Proceed with making a dsDNA library from the complementary DNA (cDNA)

Sequence as usual
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Metatranscriptomics

To study the transcriptome (RNA) isolated from environmental samples.
Shotgun sequencing of the metatranscriptome

Filter out host RNA by alignment to the host genome
Filter out any remaining rRNA by alignment to databases like SILVA

2 alternatives for filtered short reads (similar to DNA)

1. Align the remaining short-reads to various databases to identify genic information

2. Alternatively, assemble the short reads into longer pieces or contigs before aligning

to the genic databases.

Deduce the role of the microbiome based on the transcripts expressed
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Methods to study the Microbiome

To study a specific microbiome (e.g. intestinal, vaginal, feet etc.), you can

isolate and study the DNA or the RNA from the environmental samples

DNA-based methods

« Taxonomic diversity by sequencing variable 16S regions

« Shotgun sequencing of the whole metagenome
—  Functional information, what genes are enriched in the microbiome?

—  Taxonomic diversity

RNA-based method

« Shotgun sequencing of the whole metatranscriptome

—  More direct functional information about gene expression
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