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Genome sequencing and Variant Calling

Introduction to using NGS for Variant Detection
Sequencing Technologies, specifically lllumina
File Formats, FASTQ, SAM, BAM, vcf, bcf
QC steps

Variant Calling (data processing)

Computational Requirements
» Data Storage

» Processing Capacity

Brief Introduction to using NGS for microbiome analysis
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Introduction to using NGS for Variant Detection
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Human genomic diversity

All anatomically modern humans outside Africa descend from a set of
relatively small populations that left the continent less than 100,000 years
ago. Populations within Africa are much more genetically diverse.

Until ~500 years ago, there was relatively little admixture between these
populations except from events linked to a few large-scale migrations (e.g.
invasions of Europe by Central Asians).

The phenotypic and genotypic diversity seen among these populations
stems from two factors: genetic drift and selection based on reproductive
fitness. Cultural as well as environmental differences affect traits conferring
increased reproductive fitness.

Extensive genotyping has made it possible to correlate sets of genetic
variants (haplotypes) with very specific populations and to reconstruct the
ancestry of many living individuals.



Wandering humans

(New York
City)

SOUTHERN
EUROPE

THE HUMAN
JOURNEY
From global DNA
data, Genographic
and other scientists
have charted the
spread of humankind
out of East Africa.
The dates here

4 Generalized route Migration date
represent the first 30,000
arrivals in a region. p— years ago

Modern humans
migrated out of Africa,
gradually populating the
globe in relatively small
groups. Current human
genetic diversity mirrors
the routes and timings
of these migrations.

Source: National Geographic, 2009
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How diverse are we?
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How do human genomes differ?

Single nucleotide polymorphisms (SNPs):
At a given position in the genome, some haplotypes carry one nucleotide
while others carry another; the vast majority of SNPs are bi-allelic
It is believed that the vast majority of SNPs present at a minor allele

frequency of >5% worldwide have been characterized and deposited in
dbSNP, although this may not be true for some African populations

Copy number variants (CNVs):

Many regions of the genome have been duplicated during evolution, and
there are haplotypic differences in copy numbers between individuals;
CNVs can range between a few nucleotides and tens of thousands in size

Structural variants

Regions of an individual haplotype can be inverted, deleted, or

translocated relative to the reference genome sequence
O Most of these variants are not directly pathogenic!
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Phenotypic impacts

Most human genomic variants have no phenotypic impacts
Most of those that do have phenotypic impacts are either positively selected (i.e.
they confer a reproductive advantage) or neutral
Typically, they affect traits like height, facial features, hair or skin color, often
associated with ethnic origin

Some genomic variants have effects that are deleterious to health

Most of these are recessive: their effect is observed only if both alleles are
affected; these recessive alleles are often associated with specific ethnic
groups

Those that are dominant will either be selected against and disappear, or

have effects that minimally impact reproductive fitness (e.g., adult cancer)

This implies that the vast majority of alleles commonly found in the
population do not directly cause disease
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How to assess genomic diversity?

Methods are available to assess all three major sources of diversity:
SNPs, copy number variants, and structural variants
For SNPs, many different methods have been used:
Hybridization based, primarily SNP arrays
Enzyme-based methods, primarily oligonucleotide ligation and RFLP
Methods measuring physical properties of DNA
For copy number variants, the main methods are hybridization based

For structural variants, there are no universally accepted methods, but the most

reliable ones use partial sequencing of large clones (e.g. fosmids)

High-throughput sequencing should be able to detect all types of variants
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Genome Sequencing

Next-generation
DNA sequencing

‘ ... CATTCAGTAG ... |
‘ .. AGCCATTAG ... ‘

— ‘ GGTAGTTAG ... | |‘_‘GGTAMCTAG ‘
| .. TATAATTAG .. | ‘ .. CGTACCTAG ... ‘
Genomic millions-billions of reads
DNA ~30-1000 nucleotides
Resequencing De novo assembly
*
Align reads to reference Construct genome sequence
genome and identify variants from overlaps between reads

Benjamin J. Raphael*

Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
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Genome Resequencing & Variant Detection

Pros
» Its per base cost is cheaper than Sanger sequencing
» Itis getting cheaper allowing for large studies to be executed

» |t makes truly Genome-Wide analyses feasible

cons

» The datasets are large and require relatively large computational

infrastructure for data storage and processing

» Some ambiguity in final results (but this can be overcome with

stringent methodologies) 1
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Human Reference Genome

hg19 — most commonly used

hg38 — the new version released at the end of 2013

“GRCh38 is the second major release of the human reference assembly
made by the GRC. This release affects chromosome coordinates, includes
261 alternate loci scaffolds and corresponding alignments that provide
chromosome context, and replaces centromere gaps with modeled
sequence. The GRC resolved 1008 issues.”

- http://www.ncbi.nIm.nih.gov/projects/genome/assembly/grc/human/

13
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Variant Calling — Types of Data

Whole Genome Sequencing (WGS)

» Fragment genomic DNA

» Sequence all the fragments

Exome Sequencing

» Capture DNA pieces that are known to be transcribed (exons) using
arrays with sequence similarities

» Amplify these pieces and sequence them

14
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Exome analysis
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Variant Calling — Types of Data

Whole Genome Sequencing (WGS)

»

»

Fragment genomic DNA

Sequence all the fragments

Exome Sequencing

»

»

»

»

»

Capture DNA pieces that are known to be transcribed (exons) using
arrays with sequence similarities

Amplify these pieces and sequence them
Most known exonic regions captured, but not all
Smaller dataset with concentrated information

Less sequencing necessary to reach the same depth of coverage
16
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Variant Calling — “Coverage” & “Depth”

Coverage — What % of the genome sequence is represented in the

sequencing data

Depth of coverage — How many times is every base in the genome

represented (on average)

Coverage 5 3 2

17
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Variant Calling — Depth of coverage

= 101 bp

13,630,540 bp 13,630,560 bp 13,630,580 bp 13,630,600 bp
| | | | | | | | |

DATATYPE
DATAFILE

NAVE

GTCCTGTAGCTGTACAAACATGCCGAAAGCCTCAAAACATGGCGCCCAGCCAAAAAGCTACTGCCATCCGCAATTGCAACTGTG

Ha--d-4--4-4= == [N
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Variant Calling — Depth of coverage

For WGS
» Haploid genome size => 3.2 Giga base pairs (3.2 billion)

» 90x coverage => ~160 Gbp

For Exome Sequencing
» Exome size => 33 Mega base pairs (33 million bases)
» 50x coverage => ~1.65 Gbp
» About 100 times smaller than WGS

» Depending on your method of capture, this number can vary
19
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Variant Calling — Depth of coverage

l— Fixed sequencing budget _i

Deep single-sample Shallower multi-sample

- _L —ve Sample 1 =~ o
_ _r Sample2-{_ "

Sample 1 - —L —& Sample 3 ~{~ _L 4—

20
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Sequencing Technologies

(lllumina)

21
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HiSeq 2500 Sequencing System

]!a RAPID RUN

50 - 600Gb 10 — 180Gb
2 — 11 days 7 — 40 hours
2 x 100bp max 2 x 150bp max

= =

Larger projects, Smaller projects,
fewer runs quick results

22
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MiSeq v3 Sequencing System

Reads: 250nt-300nt in length

Yield per run:
25 to 50 million paired-reads

Applications:
16s rRNA
Sequencing of small genomes
(bacteria, fosmids, BACs, virus)
Targeted sequencing (exome capture)
de novo transcriptome assembly

Turnaround time: ****FAST****
Flowcell (1 lane)

23
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lllumina Sequencing Workflow

Library Preparation Fragment DNA
Repair ends
_— Add A overhang
— .
o Ligate adapters
228 5” Purify

Hybridize to flow cell

Extend hybridized template
Perform bridge amplification
Prepare flow cell for sequencing

Sequencing
Perform sequencing
Generate base calls
J

Data Analy5|s

Images
Intensities
Reads

Alignments

24
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DNA

Al Fragment genomic DNA

4

P)

B. End repair and phosphorylate

4
P)
P, 2
A

C. Alaling

D. Ligate index adapter

. P5 Rd1 SP DNA Insert Index

Rd2 SP P7

E. Denature and amplify for final product

25
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lllumina Sequencing Technology:
Reads and BarCoding

Library from sample 1

L oone Single-read ..ot

Paired-end 550

Library from sample 2

— EE—— GCACCG =——
— E— CCTGGC e—
Computationally separated
—
based on barcode sequence
. ost-sequencin
Library from sample 3 P 9 9
— —— GGTCCA m—
— e CCAGGT w———
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Single molecule array
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Library Preparation ﬁ Cluster Growth \1j Sequencmg
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“Phred” quality (Q) scores

Each base call is associated with a quality score (Q)

Q =-10 x log,,(P), where P is the probability that a base call is

erroneous
A Q score of 20 => 1:100 chance that the base is called incorrectly

A Q score of 30 => 1:1000 chance ...

It is generally believed that the lllumina Q scores are accurate

28
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Variant Calling — Depth of coverage

For WGS
» Haploid genome size => 3.2 Giga base pairs (3.2 billion)
» 950x coverage => ~160 Gbp

» Assuming 100 nucleotide Paired-End reads this is equivalent to

800 million paired reads

» ~5 lanes of lllumina Hi-Seq per sample for WGS

30
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Variant Calling — Depth of coverage

For Exome Sequencing
» Exome size => 33 Mega base pairs (33 million bases)
» 50x coverage => ~1.65 Gbp

» Assuming 100 nucleotide Paired-End reads this is equivalent to 80

million paired reads

» <1 lane of lllumina Hi-Seq per sample for exome sequencing

31
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Variant Calling — Depth of coverage
r—— Fixed sequencing budget _l

Deep single-sample Shallower multi-sample
T e M sample2 < T w—_
Sample 1 = _g__ 1 Sample 3 = _L
- R e — Sample 4 ~{_ __*: $_
| y ) Y Variants \ v )
Found 3 variants total Found 5 variants total

* Higher sensitivity for variants
in the sample

* More accurate genotyping per
sample

* Cost: no information about * More total variants
other samples discovered 32

Sensitivity dependent on
frequency of variation

Worse genotyping
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Variant Calling — Depth of coverage

r—— Fixed sequencing budget _l

Deep single-sample Shallower multi-sample
- _$_ e Sample 1 =~ W

Sample 2~

Sample 1 _L _L Sanpied {_L

o

| ) Y Variants \ )
Found 3 variants total

Found 5 variants total

* Higher sensitivity for variants

» Sensitivity dependent on
in the sample

frequency of variation
Sensitivity is the measure of true variants
being identified

other samples discovered

33
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File Formats
(NGS)

34
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Formats associated with Variant Detection

Input: - Raw sequence (potentially billions of small strings)
Output: - A human ‘diff’ file

Intermediary files:
FASTA
SAM/BAM

Optional ones, depending on your needs:
* Known variants (VCF)
* Pedigree information (PED)
* Genotyping information (SnpEff database)

35
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Formats: FASTA

>unique sequence ID My sequence is pretty cool
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC

Deceptively simple format (e.g. there is no standard)

However in general:
Header line, starts with *>’,
followed directly by an ID,
... and an optional description (separated by a space)

Files can be fairly large (genomes)

36
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Formats: FASTA

E.g. aread

>unique_ sequence ID My sequence is pretty cool
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC

E.g. a chromosome

>Groupl0 gi|323388978|ref|NC 007079.3| Amel 4.5, whole genome shotgun sequence
TAATTTATATATCTATTTTTTTTATTAAAAAATTTATATTTTTGTTAAAATTTTATTTGATTAGAAATAT
TTTTACTATTGTTCATTAATCGTTAATTAAAGATAGCACAGCACATGTAAGAATTCTAGGTCATGCGAAA
TTAAAAATTAAAAATATTCATATTTCTATAATAATTAAATTATTGTTTTAATTTAAGTAAAAAAATTTCT
AAGAAATCAAAAATTTGTTGTAATATTGAAACAAAATTTTGTTGTCTGCTTTTTATAGTAACTAATAAAT
ATTTAATAAAAAATTACTTTATTTAATATTTTATAATAAATCAAATTGTCCAATTTGAAATTTATTTTAT
CACTAAAAATATCTTTATTATAGTCAATATTTTTTGTTAGGTTTAAATAATTGTTAAAATTAGAAAATGA
TCGATATTTTCAAATAGTACGTTTAACTAATACTTAAGTGAAAGGTAAAGCGGTTATTTAAAATATTGAT
TTATAATATTCGTGACATAATATATTTATAAATAGATTATATATATATATATACATCAAAATATTATACG
AGAACTAGAAAATATTACAGATGCAAAATAAATTAAATTTTGTAAATGTTACAGAATTAAAAATCGAAGT 37
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Formats: FASTQ

@unique_sequence_ ID
ATTCATTAAAGCAGTTTATTGGCTTAATGTACATCAGTGAAATCATAAATGCTAAAAATTTATGATAAAAGAATAC
+

=— (DD--DDD/DD5: *1B3&)-B6+8@+1 (DDB:DD07/DB&3 ( (+:2=8*D+DDD+B) * ) B.8CDBDD4DDD@ @D

May be ‘raw’ data (straight from seq pipeline) or processed (trimmed for

various reasons)
Can hold 100’s of millions of records per sample

Files can be very large (100’s of GB) apiece

"#$%&'"'()*+,-./0123456789:;<=>7?@ABCDEFGHI

12345678910 ... oo i e 2 40

38
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Formats: SAM/BAM

SAM - Sequence Alignment/Map format
SAM file format stores alignment information

Normally converted into BAM (text format is mostly useless for analysis)

Specification: http://samtools.sourceforge.net/SAM1.pdf

Contains FASTQ reads, quality information, alignment
information, other information about samples (meta data) etc.

Files are typically very large: Many 100’s of GB or more

39
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Formats: SAM/BAM

BAM — BGZF compressed SAM format
May be unsorted, or sorted by sequence name or genome coordinates
May be accompanied by an index file (.bai)

Makes the alignment information easily accessible to downstream
applications

Relatively simple format makes it easy to extract specific features, e.g.
genomic locations

BAM is the compressed/binary version of SAM and is not human
readable. Uses a specialized compression algorithm optimized for
indexing and record retrieval (bgzip)

Files are typically very large: 1/5 of SAM, but still very large |,
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Formats: VCF/BCF

VCF (Variant Call Format)
BCF — direct bgzip-compressed VCF format

Specification:

From the 1000 Genomes Project

http://www.1000genomes.org/wiki/Analysis/Variant%20Call

%20Format/vcf-variant-call-format-version-41

41
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Formats: VCF

##fileformat=VCFv4.1

##fileDate=20090805

##source=myImputationProgramv3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,1length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens”,taxonomy=x>
##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP ,Number=1,Type=Integer,Description="Total Depth">

##INFO=<ID=AF ,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2 ,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10@,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT ,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA0Q0O1 NAQ00O2 NA
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 010:48:1:51,51 110:48:8:51,51 1/
20 17330 . T A 3 qlo NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 010:49:3:58,50 011:3:5:65,3 0/
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 112:21:6:23,27 211:2:0:18,2 2/
20 1230237 . T . 47  PASS  NS=3;DP=13;AA=T GT:GQ:DP:HQ 010:54:7:56,60 010:48:4:51,51 @/
20 1234567 microsatl GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/

42
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QC steps to consider for
NGS-based Variant Calling

43
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QC steps

During and after library prep

* Is the quality and amount of genomic DNA reasonable?

» Is the quality and amount of prepared library good?

During sequencing and immediately after

* Are there too many or too few clusters?

» |s the sequencing proceeding as expected?

Before data processing
* Is the data quality good?

» If not, can getting rid of low quality reads or bases help?

44
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QC - During and after library prep

Is the quality and amount of genomic DNA

reasonable?
A 1% agarose gel can be run to check quality

* For estimating DNA amount, a nanodrop (spectrophotometric
method) can often be inaccurate due to various reasons and the

recommendation is to use the Qubit (fluorometric method)

Is the quality and amount of prepared library good?

« Perform a Bioanalyzer run to double check the size

» Perform a Qubit DNA assay estimate the quantity

45
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QC - During sequencing and immediately after

Are there too many or too few clusters?

« Perform one cycle of sequencing to test if all 8 lanes of the flow cell

have a good number of clusters (“Goldilocks” effect)

» This will impact final data quality!

|s the sequencing proceeding as expected?

* Monitor the stats on the monitor of the machine every few hours to

ensure there are no issues with the runs
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QC - During sequencing and immediately after

- Analysis e — Analysis — :
Extracted: 215 Called 214  Scored: 214 View Data ’ i | Extracted. 214 Called 214 Scored. 214 View Data
|
:

%>Q30

Fluidics (>)

[W] VSRM
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QC - Before data processing

FastQC to check quality scores and other metrics of the FASTQ
data file

Trimmomatic to remove low quality bases from either end and

choose to keep only reads with enough nucleotides remaining
Trimmomatic to remove any leftover adaptor sequences

FastQC to check the metrics after trimming
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QC - Before data processing

Before quality trimming After quality trimming

Quality scores across all bases (Sanger / lllumina 1.9 encoding) Quality scores across all bases (Sanger { lllumina 1.9 encoding)
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Variant Calling Data Processing Steps
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Phase 1: nGS data processing  Phase 2: variant discovery and genotyping Phase 3: integrative analysis

Typically by lane Typically multiple samples simultanaously but can be single sample alone
Sample 1 . Sample N Raw Raw Raw
reads reads indels SNPs Svs
J

External data

Input Raw reads

l

Mapping

Knc—wn
F'edlgrees variation

Poputon Known
structure genotypes

1

realignment

Duplicate /| Variant quality ||
marking | recalibration ||

! i

i 1

| |

I Structural : I ‘ i
Base quality variation (SV) E Genotype |
recalibration | refinement |,
| —

Analysis-rea
Output ?riaﬂs ayl ...

Raw vanants f a===a«a« Analysis-ready
variants

Figure 1 Framework for variation discovery and genotyping from next-generation DNA sequencing.
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Calling variants with the GATK

GATK

“The Genome Analysis Toolkit or GATK is a software package developed at the
Broad Institute to analyse next-generation resequencing data. The toolkit offers a
wide variety of tools, with a primary focus on variant discovery and
genotyping as well as strong emphasis on data quality assurance. Its robust
architecture, powerful processing engine and high-performance computing

features make it capable of taking on projects of any size.”

- http://www.broadinstitute.org/gatk/
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Calling variants with the GATK

GATK provides a good infrastructure and a guide to best practices to

be employed for variant calling

It utilizes several open-source tools at various steps, along with GATK-

specific tools and scripts
Can use both exome and WGS data for variant calling

GATK takes advantage of the concept of parallel computing to speed

up the pipeline
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Calling variants with the GATK

Parallelism

process

threads

Example of a Node on a cluster (UNIX)

* 1 Dell PowerEdge R620 Node

» 24 Intel Xeon E5-2697 @ 2.7GHz CPU Cores
« 384 Giga Bytes of RAM
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Calling variants with the GATK

Parallelism

process

i I threads | ‘

(N A0 dh b 48 dh 4B 4B 40 (48 A48 40 %‘\ (N A1 dh 40 (48 Ah dh dh 40 4D
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Calling variants with the GATK

GATK provides a good infrastructure and a guide to best practices to

be employed for variant calling

It utilizes several open-source tools at various steps, along with GATK-

specific tools and scripts
Can use both exome and WGS data for variant calling

GATK takes advantage of the concept of parallel computing to speed
up the pipeline
You can implement this type of a set up outside of the GATK constraints
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Calling variants with the GATK

Data Pre-processing >> Variant Discovery >> Preliminary Analyses

[__RawReads | veuad AnclysisReady ... Analysis-Ready SNPs
[ 5 Reads 5 Variants & Indels
( JointVariant Calling | Genotype
: i : Refinement
[ J . = : Functional
Indel Realignment § ey [ ] [ § Annotation
' : [ e SN.Ps Indlels :
[ Base Recalibration ] : 1| [ : M
¢ § Variant Recalibration ‘ g [ A o ]
[ RR Compression ] : (separately per variant type) : look good?
[ | ! ,A,
Analysis-Ready : ) :
[ Reads ] ....... Fllbred [ sNPs ] [ lndels ] ....... ® ©
Variants troubleshoot use in project
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Calling variants with the GATK

Data Pre-processing

[ Indel Realignment J

.

( Base Recalibration ]
+

[ RR Compression }
v

Analysis-Ready
Reads
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Calling variants with the GATK

Data Pre-processing

=)

Mapping or Aligning raw reads to reference

genome is usually done with BWA (Burrows-

Raw Reads

| ot e
Map To Reference
Mark Duplicates

Wheeler Aligner)

{

Duplicates are marked using Picard

Very important steps that set up the quality of the Indel Realignment
'

variant calling [ Base Recalibration |
'

Tools used for these steps are external to GATK [ RRCompression |
'

Analysis-Ready
Reads
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Calling variants with the GATK

Mapping

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

|||||||
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Calling variants with the GATK

Mapping
Theoretically this is a simple step to determine where the read
matches the reference genome
But, there are several issues to be considered in practice
 Mismatches due to a variant or a sequencing error
« Aread mapping to more than one location (repeats)
* Mapping Quality of the read depends on these factors
The FASTAQ files are often “chunked” into smaller files for this step,

and remerged after alignment
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Calling variants with the GATK
Marking duplicates (de-duplicating)

% =sequencing error propagated in duplicates

=

Reads
> mapped to
reference

.
‘

\ After marking duplicates, the GATK will only see :

FP variant call
(bad)
(FP=False positive) B e T —— ]
oe— O e

... and thus be more likely to make the right call 62
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Calling variants with the GATK

Data Pre-processing — T nnnn — TN
=iEciiii: mmm ) S22

‘
(4
Map To Reference
Mark Duplicates
=

Indel Reallgnment

v

[ Base Recalibration ]

Original SAM Ordered BAM

{

De-duplicate

=

$ = S.SiSiSE — i HHHH
(CRRGomeression ) |ff| (| i=212i2125 S =HHHHE
; =:2iEisi= 4@ Addreadgroup m i=izizizisis
[ =HEHHHES information =HHHHE
Reads of || S——tm i - — — .-

Final BAM ' Dedupped BAM
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Calling variants with the GATK

These steps are computationally expensive, and
data are usually split into smaller “chunks” prior to

mapping and marking duplicates.

If multiple samples are being processed, these

steps are performed separately for each sample

These steps set up the stage for good quality calls

« All later steps assume that reads are placed in the right

location and represent that region of the genome

* Duplicates originate