

16SrRNA Intermediate Bioinformatics Online Course

16S analysis pipeline QC and ASV picking using the dada2 pipeline

• <u>Session 1</u>:

QC and ASV picking using the dada2 pipeline

• <u>Session 2</u>:

Taxonomic classification and alignment using the dada2 pipeline

Learning Objectives

- To give an overview on quality control process
- To give a background on dada2
- To give a general understanding of the 16S rRNA analysis pipeline using dada2
- To complete the dada2 workflow

- To understand each step of 16S rRNA analysis pipeline using dada2
- To run 16S rRNA analysis pipeline from raw reads
- To know how to edit files and use command line
- To choose the best approach and tools to analyze your data

16SrRNA Intermediate Bioinformatics Online Course

16S analysis pipeline QC and ASV picking using the dada2 pipeline

- Quality Control
- DADA2 background
- DADA2 workflow

- Before analyzing generated sequence to draw biological conclusions, a quality control check should be performed to make sure there is no biases in the data.
- QC gives a quick impression of whether your data has any problems of which you should be aware before doing any analysis.

Potential problems:

- Low confidence bases (Ns)
- Sequence specific bias
- Sequence contamination
- Adapters

Software packages for QC:

- FastQC
- MultiQC
- FastX-Toolkit
- PRINSEQ
- TagCleaner
- NGS QC Tool-Kit

FASTQ format

What is a FastQ file?

FASTQ= FASTA + Quality

FastQ format is a text-based format for storing both a biological sequence and its corresponding quality scores.

H3ABioNet Pan African Bioinformatics Network for H3Africa

FASTQ format

- Each FastQ file contains hundreds of millions of rows.
- Each block of 4 lines, starting with " @" represents a read.

Line 1 begins with a '@' character and is followed by a sequence identifier and an optional description (like a FASTA title line).

Line 2 is the raw sequence letters (ATCG).

Line 3 begins with a '+' character and is optionally followed by the same sequence identifier (and any description).

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.

FASTQ format

A FastQ file containing a single sequence might look like this:

@read name

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+ read name

!"*(((((***+))%%%++)(%%%%).1***-+*"))**55CCF>>>>>CCCCCC65

The character '!' represents the lowest quality while '~' is the highest.

Quality measurements

Base-calling error probabilities are reported by sequencers. Usually in Phred (quality) score. Usually coded by ASCII characters

Phred score

 $Q = -10 \log_{10} P$

If the quality of a base is 20, the probability that it is wrong is 0.01

T C A G T A C T C G 40 40 40 40 40 40 40 37 35

Quality measurements

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	SSSSSSSSSS	SSSS		
X	XXXXXXXXXXX	************************		
	IIIIII	TITITITITITITITITITI		
		33333333333333333333333333333		
LLEBLELLELLELLELLELLEL	LLLLLLLLLL	LLLL.		
!"#\$\$&'()*+/0123456789::	<=>?@ABCDF	FGHIJKLMNOPORSTUVWXYZ	\1^ `abcdefghiikln	monorstuvwxvz{ }-
33 59	64	73	104	126
0		40		
-5	0	9		
	0	9		
	3	9		
0.226	31	41		
S - Sanger Phred+33,	raw reads	typically (0, 40)		
X - Solexa Solexa+64,	raw reads	typically (-5, 40)		
<pre>I - Illumina 1.3+ Phred+64,</pre>	raw reads	typically (0, 40)		
J - Illumina 1.5+ Phred+64,	raw reads	typically (3, 41)		
with 0=unused, 1=unused, (Note: See discussion ab	2=Read Se ove).	gment Quality Control	Indicator (bold)	
L - Illumina 1.8+ Phred+33,	raw reads	typically (0, 41)		

What is FastQC?

FastQC aims to provide a QC report which can spot problems which originate either in the sequencer or in the library material.

FastQC reports

FastQC reports

Measure	Value
Filename	good_sequence_short.txt
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	40
%GC	45

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

FastQC reports Per Base Sequence Quality

2 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Position in read (bp) **H3ABioNet**

Pan African Bioinformatics Network for H3Africa

FastQC reports

Per Base Sequence Quality

Good quality FastQC report:

Bad quality FastQC report

FastQC reports

Per Sequence Quality Scores

Good quality FastQC report:

Bad quality FastQC report

Pan African Bioinformatics Network for H3Africa

H3ABioNet

FastQC reports

Per Base Sequence Content

16SrRNA Intermediate Bioinformatics Online Course

16S analysis pipeline QC and ASV picking using the dada2 pipeline

- Quality Control
- DADA2 background
- DADA2 workflow

Divisive Amplicon Denoising Algorithm 2 (DADA2) is an open source algorithm implemented in R, which uses a statistical inference to correct amplicon errors.

It intends to simplify the study of microbial communities by allowing to reconstruct amplicon-sequenced communities at the highest resolution.

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019 Imane Allali

Callahan et al., 2016

DADA2 implements a complete workflow that takes raw amplicon sequencing data in fastq files as input.

It produces an error-corrected table of the abundances of amplicon sequence variants in each sample (ASV table).

Callahan et al., 2016 16SrRNA Intermediate Bioinformatics Online Course:

> Int_BT_2019 Imane Allali

Benefits to DADA2:

- Compatible with all amplicon types 16S, 18S, ITS,...
- Works on different next generation sequencing platforms

Illumina, Ion Torrent, 454 pyrosequencing

- Provides single-nucleotide resolution
- Lower false-positive rate

- R or RStudio.
- QIIME2
 - Simplified and condensed the dada2 workflow

Benjamin Callahan

Benjamin Callahan

16SrRNA Intermediate Bioinformatics Online Course

16S analysis pipeline QC and ASV picking using the dada2 pipeline

- Quality Control
- DADA2 background
- DADA2 workflow

Before running the pipeline:

- Barcodes, adapters should be removed
 - Cutadapt, Trimmomatic, …
- Samples should be demultiplexed
 - FASTX-Toolkit, idemp, ...
- For paired-end data, forward and reverse reads must be in the same order.

<u>The data:</u>

- The data can be accessed <u>here</u>.
- Stool samples.
- Paired-end 300 bp reads.
- Barcodes/Adapters have been removed.

Sample	Dog	Treatment
Dog1	В	2
Dog2	G	3
Dog3	к	3
Dog8	В	4
Dog9	G	0
Dog10	к	4
Dog15	В	1
Dog16	G	4
Dog17	к	0
Dog22	В	3
Dog23	G	1
Dog24	к	2
Dog29	В	0
Dog30	G	2
Dog31	к	1

Getting Ready

Load the dada2 package in your R/RStudio

library(dada2); packageVersion("dada2")

If you do not already have it, see the dada2 installation instructions

Getting Ready

Set the path, it points to the **dog samples** directory:

MY HOME <- Sys.getenv("HOME") data <- paste(MY HOME, "/dada2 tutorial dog/dog samples", sep='') # change the path list.files(data)

[29] "Dog9 R1.fastq" "Dog9 R2.fastq"

[1] "Dog1 R1.fastg" "Dog1 R2.fastg" "Dog10 R1.fastg" "Dog10 R2.fastg" [5] "Dog15 R1.fastq" "Dog15 R2.fastq" "Dog16 R1.fastq" "Dog16 R2.fastq" [9] "Dog17 R1.fastq" "Dog17 R2.fastq" "Dog2 R1.fastq" "Dog2 R2.fastq" [13] "Dog22 R1.fastq" "Dog22 R2.fastq" "Dog23 R1.fastq" "Dog23 R2.fastq" [17] "Dog24 R1.fastq" "Dog24 R2.fastq" "Dog29 R1.fastq" "Dog29 R2.fastq" [21] "Dog3 R1.fastg" "Dog3 R2.fastg" "Dog30 R1.fastg" "Dog30 R2.fastg" [25] "Dog31 R1.fastq" "Dog31 R2.fastq" "Dog8 R1.fastq" "Dog8 R2.fastq"

Getting Ready

Sort the forward and reverse reads

```
# Forward and reverse fastq filenames have format: SAMPLENAME_R1.fastq and SAMPLENAME_R2.fastq
dataF <- sort(list.files(data, pattern="_R1.fastq", full.names = TRUE))
dataR <- sort(list.files(data, pattern="_R2.fastq", full.names = TRUE))</pre>
```

Extract sample names

Extract sample names, assuming filenames have format: SAMPLENAME_XXX.fastq
list.sample.names <- sapply(strsplit(basename(dataF), "_"), `[`, 1)
list.sample.names</pre>

[1] "Dog1" "Dog10" "Dog15" "Dog16" "Dog17" "Dog2" "Dog22" "Dog23"
[9] "Dog24" "Dog29" "Dog3" "Dog30" "Dog31" "Dog8" "Dog9"

Quality Control

- The quality plot of three forward samples.
- Scores never really go below30.

Quality Control

H3ABioNet

Pan African Bioinformatics Network for H3Africa

```
plotQualityProfile(dataR[1:3])
             Dog1 R2.fastq
                                         Dog10 R2.fastq
                                                                     Dog15 R2.fastq
  40
Quality Score
  20.
  10
      Reads: 118343
                                  Reads: 79342
                                                              Reads: 131483
   0-
                     200
                             300
                                         100
                                                 200
                                                         300
                                                                     100
                                                                             200
             100
                                                                                     300
                                 0
                                                             0
                                            Cycle
```

- The reverse reads are slightly different.
- The scores are good but they drop off right around 275 bp.

Filter and Trim

Set filtered subdirectory and rename files

Filter and Trim

truncLen truncates your reads at specific base. truncLen=c(290,275)

The amplicon length. The length of your overlap, by default is 20 for DADA2.

Filter and Trim

maxN maximum number of ambiguous nucleotides. maxN=0

DADA2 requires no Ns.

Filter and Trim

maxEE maximum number of estimated errors allowed in your reads. maxEE=c(2,2)

The quality of your sequences.

Filter and Trim

truncQ truncates the read at the first nucleotide with a specific quality score.

truncQ=2

Score of 2 means that the probability of the base being incorrect is 63%.

Filter and Trim

rm.phix removes reads that match against the phiX genome. **rm.phix=TRUE**

Filter and Trim

Compress if you want to fastq files to be gzipped.

Multithread if you want your files to run in parallel.

Learn the Error Rates

It will create an error model that will be used by the DADA2 algorithm.

errF <- learnErrors(filt.dataF, multithread=TRUE)

errR <- learnErrors(filt.dataR, multithread=TRUE)

Learn the Error Rates

Pan African Bioinformatics Network for H3Africa

- The error rates for each possible transition (A -> C).

- As quality score increases, the expected error rate decreases.

Sample Inference

Set filtered subdirectory and rename files

It uses the error model that was created earlier.

p-value high -> sequence likely caused by errors.
p-value low -> sequence is real.

16SrRNA Intermediate Bioinformatics Online Course

16S analysis pipeline QC and ASV picking using the dada2 pipeline Practical

The practical is available here: <u>https://iallali.github.io/DADA2_pipeline/</u> <u>16SrRNA_DADA2_pipeline.html</u>

Getting Ready

First, we load the dada2 package on your RStudio. if you do not already have it, see the dada2 installation instructions.

```
library(dada2); packageVersion("dada2")
```

[1] '1.13.1'

We set the path so that it points to the extracted directory of the dataset named "dog_samples" on your computer or cluster:

```
MY_HOME <- Sys.getenv("HOME")
data <- paste(MY_HOME, "/dada2_tutorial_dog/dog_samples", sep='') # change the path
list.files(data)</pre>
```

```
## [1] "Dogl_Rl.fastq" "Dogl_R2.fastq" "Dogl0_Rl.fastq" "Dogl0_R2.fastq"
## [5] "Dogl5_Rl.fastq" "Dogl5_R2.fastq" "Dogl6_R1.fastq" "Dogl6_R2.fastq"
## [9] "Dogl7_Rl.fastq" "Dogl7_R2.fastq" "Dog2_R1.fastq" "Dog2_R2.fastq"
## [13] "Dog2_Rl.fastq" "Dog2_R2.fastq" "Dog23_R1.fastq" "Dog2_R2.fastq"
## [17] "Dog2_R1.fastq" "Dog24_R2.fastq" "Dog29_R1.fastq" "Dog29_R2.fastq"
## [25] "Dog3_R1.fastq" "Dog3_R2.fastq" "Dog30_R1.fastq" "Dog30_R2.fastq"
## [29] "Dog3_R1.fastq" "Dog3_R2.fastq" "Dog3_R2.fastq"
## [29] "Dog9_R1.fastq" "Dog9_R2.fastq" "Dog9_R2.fastq"
```

If your listed files match those here, you can start running the DADA2 pipeline.

Now, we read in the names of the fastq files and we sort them by forward and reverse. Then, we perform some string manipulation to extract a list of the sample names.

```
# Forward and reverse fastq filenames have format: SAMPLENAME_R1.fastq and SAMPLENAME_R2.fastq
dataF <- sort(list.files(data, pattern="_R1.fastq", full.names = TRUE))
dataR <- sort(list.files(data, pattern="_R2.fastq", full.names = TRUE))
# Extract sample names, assuming filenames have format: SAMPLENAME_XXX.fastq
list.sample.names <- sapply(strsplit(basename(dataF), "_"), ~[~, 1)
list.sample.names</pre>
```


16SrRNA Intermediate Bioinformatics Online Course

16S rRNA analysis pipeline Taxonomic classification and alignment using the dada2 pipeline

• <u>Session 1</u>:

QC and ASV picking using the dada2 pipeline

• <u>Session 2</u>:

Taxonomic classification and alignment using the dada2 pipeline

- Quality Control
- DADA2 background
- DADA2 workflow

Merge Reads

merge.reads <- mergePairs(dadaF, filt.dataF, dadaR, filt.dataR, verbose=TRUE)</pre>

76306 paired-reads (in 1153 unique pairings) successfully merged out of 82378 (in 2526 pairings) input.

54948 paired-reads (in 720 unique pairings) successfully merged out of 60139 (in 1811 pairings) input.

83013 paired-reads (in 843 unique pairings) successfully merged out of 89310 (in 2175 pairings) input.

74533 paired-reads (in 1093 unique pairings) successfully merged out of 81135 (in 2674 pairings) input.

67364 paired-reads (in 855 unique pairings) successfully merged out of 71053 (in 1743 pairings) input.

69262 paired-reads (in 1194 unique pairings) successfully merged out of 76778 (in 2891 pairings) input.

mergePairs merges reads only if they exactly overlap.

The length of your overlap, by default is 20 nt for DADA2, you can lower it by using this parameter **minOverlap**.

Merge Reads

head(merge.reads[[1]])

##

sequence

abundance forward reverse nmatch nmismatch nindel prefer accept

##	1	460	2	1	253	0	0	2	TRUE
##	2	456	1	1	253	0	0	2	TRUE
##	3	421	5	1	253	0	0	2	TRUE
##	4	414	7	2	252	0	0	2	TRUE
##	5	401	6	1	253	0	0	2	TRUE
##	6	400	4	1	253	0	0	2	TRUE

H3ABioNet

Pan African Bioinformatics Network for H3Africa

Int_BT_2019 Imane Allali

Construct Amplicon Sequence Variant (ASV) Table

seqtab <- makeSequenceTable(merge.reads)
dim(seqtab)</pre>

[1] 15 13527

table(nchar(getSequences(seqtab)))

311 312 313 315 ## 107 9136 4283 1

Construct Amplicon Sequence Variant (ASV) Table

1	A	B	C	D	E	F	G	H		1	ĸ	L	M
1	1.12.12	TTGTGTGCC/	TTGTGTGCC/	TGTGTGCCA	TGTGTGCCA	TTGTGTGCC/	TTGTGTGCC/	TGTGTGCCA	TGTGTGCCA	TTGTGTGCC/	TTGTGTGCC/	TGTGTGCCA	TTGTGTGCC/
2	Dog1	0	0	242	205	0	0	0	223	0	0	195	0
3	Dog10	0	0	0	0	0	0	0	0	0	0	0	0
4	Dog15	0	0	0	0	0	0	0	0	0	0	0	0
5	Dog16	0	0	0	0	0	0	0	0	0	0	0	0
6	Dog17	0	0	0	0	0	0	0	0	0	0	0	0
7	Dog2	373	0	0	0	276	0	0	0	283	277	0	322
8	Dog22	1926	0	0	0	1516	0	0	0	1453	1459	0	1366
9	Dog23	0	955	0	0	0	805	0	0	0	0	0	0
10	Dog24	0	0	0	0	0	0	1747	0	0	0	0	0
11	Dog29	0	0	0	0	0	0	0	0	0	0	0	0
12	Dog3	0	921	0	0	0	944	0	0	0	0	0	0
13	Dog30	0	0	0	0	0	.0	0	0	0	0	0	0
14	Dog31	0	0	1596	1625	0	0	0	1523	0	0	1536	0
15	Dog8	0	0	0	0	0	0	0	0	0	0	0	0
16	Dog9	0	0	0	0	0	0	0	0	0	0	0	0
17		a second second											
18							2 2 2						

Chimera Sequence

- Chimeras are sequences formed from two or more biological sequences joined together.
- Amplicons with chimeric sequences can be formed during PCR.
- Chimeras are rare with shotgun sequencing but are common in amplicon sequencing when closely related sequences are amplified.

Chimera Checking and Removal

seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)</pre>

Identified 9112 bimeras out of 13527 input sequences.

dim(seqtab.nochim)

[1] 15 4415

sum(seqtab.nochim)/sum(seqtab)

[1] 0.5094968

- It uses *de novo* to check for two parent chimeras.
- Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a rightsegment from two more abundant "parent" sequences.

Chimera Checking and Removal

Chimera Checking and Removal

Chimera Checking and Removal

seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)</pre>

Identified 9112 bimeras out of 13527 input sequences.

dim(seqtab.nochim)

[1] 15 4415

sum(seqtab.nochim)/sum(seqtab)

[1] 0.5094968

- It uses *de novo* to check for two parent chimeras.
- Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a rightsegment from two more abundant "parent" sequences.

16SrRNA Intermediate Bioinformatics Online Course

16S rRNA analysis pipeline Taxonomic classification and alignment using the dada2 pipeline

Track Reads through DADA2 pipeline

```
getN <- function(x) sum(getUniques(x))
track.nbr.reads <- cbind(out, sapply(dadaF, getN), sapply(dadaR, getN), sapply(merge.reads, getN), rowSums(seqtab
.nochim))</pre>
```

```
colnames(track.nbr.reads) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")
rownames(track.nbr.reads) <- list.sample.names
head(track.nbr.reads)</pre>
```

##		input	filtered	denoisedF	denoisedR	merged	nonchim
##	Dog1	118343	84815	82888	83710	76306	35440
##	Dog10	79342	61952	60537	61130	54948	24103
##	Dog15	131483	91235	89781	90372	83013	48592
##	Dog16	114424	83564	81753	82442	74533	46006
##	Dog17	99610	72919	71427	72229	67364	42960
##	Dog2	108679	79668	77366	78301	69262	30129

Assign Taxonomy

taxa <- assignTaxonomy(seqtab.nochim, paste(MY_HOME, "/dada2_tutorial_dog/RefSeq-RDP16S_v3_May2018.fa.gz", sep=''
), multithread=TRUE) # change the path</pre>

RefSeq-RDP16S_v3_May2018.fa.gz

Three most common 16S databases: Silva, RDP and GreenGenes

Assign Taxonomy

Maintained:

- Silva version 132, Silva version 128, Silva version 123 (Silva dual-license)
- RDP trainset 16, RDP trainset 14
- GreenGenes version 13.8
- UNITE (use the General Fasta releases)

Contributed:

- RefSeq + RDP (NCBI RefSeq 16S rRNA database supplemented by RDP)
 - Reference files formatted for assignTaxonomy
 - Reference files formatted for assignSpecies
- GTDB: Genome Taxonomy Database (More info: http://gtdb.ecogenomic.org/)
 - Reference files formatted for assignTaxonomy
 - Reference files formatted for assignSpecies
- HitDB version 1 (Human InTestinal 16S rRNA)
- RDP fungi LSU trainset 11
- Silva Eukaryotic 185, v132 & v128
- PR2 version 4.7.2+. SEE NOTE BELOW.

Assign Taxonomy

taxa.print <- taxa # Removing sequence rownames for display only rownames(taxa.print) <- NULL head(taxa.print)

##		Kingdom 1	Phylum		Class	Order							
##	[1,]	"Bacteria"	"Firmicutes"		"Clostridia"	"Clostridiales"							
##	[2,]	"Bacteria"	"Firmicutes"		"Clostridia"	"Clostridiales"							
##	[3,]	"Bacteria"	"Bacteroidete	s"	"Bacteroidia"	"Bacteroidales"							
##	[4,]	"Bacteria"	"Bacteroidete	s"	"Bacteroidia"	"Bacteroidales"							
##	[5,]	"Bacteria"	"Firmicutes"		"Clostridia"	"Clostridiales"							
##	[6,]	"Bacteria"	"Firmicutes"		"Clostridia"	"Clostridiales"							
##		Family		Ger	nus								
##	[1,]	"Peptostrep	tococcaceae"	"CI	Lostridium_XI"								
##	[2,]	"Peptostrep	tococcaceae"	"CI	Lostridium_XI"								
##	[3,]	"Prevotella	ceae"	"A	lloprevotella"								
##	[4,]	"Prevotella	ceae"	"A	lloprevotella"								
##	[5,]	"Peptostrep	tococcaceae"	"C	Lostridium_XI"								
##	[6,]	"Peptostrep	tococcaceae"	"C	Lostridium_XI"								
##		Species											
##	[1,]	"Clostridium	m_hiranonis(A	BO	23970)"								
##	[2,]	"Clostridium	m_hiranonis(A	BO	23970)"								
##	[3,]	"Prevotella	massilia_timo	ner	nsis(NR_144750	.1)"							
##	[4,]	"Prevotellar	massilia_timo	ner	nsis(NR_144750	.1)"							
##	[5,]	"Clostridium	m_hiranonis(A	BO	23970)"								
##	[6,]	"Clostridium_hiranonis(AB023970)"											

Assign Taxonomy

write.csv(taxa, file="ASVs_taxonomy.csv")
saveRDS(taxa, "ASVs_taxonomy.rds")

-	A	B	C	D	E	F	G	H	L	1		K
1	1	Kingdom	Phylum	Class	Order	Family	Genus	Species		1.00		
2	ASV_1	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
3	ASV_2	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
4	ASV_3	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
5	ASV_4	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	01
6	ASV_5	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
7	ASV_6	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
8	ASV_7	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
9	ASV_8	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
10	ASV_9	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
11	ASV_10	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium	Clostridium	hiranonis(AB	023970)		
12	ASV_11	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
13	ASV_12	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		2
14	ASV_13	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
15	ASV_14	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		2
16	ASV_15	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
17	ASV_16	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
18	ASV_17	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)	100	
19	ASV_18	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
20	ASV_19	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
21	ASV_20	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	6
22	ASV_21	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
23	ASV_22	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptostrepto	Clostridium_	Clostridium	hiranonis(AB	023970)		
24	ASV_23	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	
25	ASV_24	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timon	ensis(NR_	144750.1)	6
26	ASV_25	Bacteria	Bacteroidete	Bacteroidia	Bacteroidale	Prevotellace	Alloprevotel	Prevotellam	assilia_timone	ensis(NR_	144750.1)	C

16SrRNA Intermediate Bioinformatics Online Course:

Int_BT_2019 Imane Allali

Assign Taxonomy

asv_headers <- vector(dim(seqtab.nochim)[2], mode="character")
count.asv.tab <- t(seqtab.nochim)
row.names(count.asv.tab) <- sub(">", "", asv_headers)
write.csv(count.asv.tab) <- sub(">", "", asv_headers)
write.csv(count.asv.tab, file="ASVs_counts.csv")
saveRDS(count.asv.tab, file="ASVs_counts.rds")

	A	В	C	Ď	E	F		G	Н	1	1	K		L	M	N	0	P
1		Dog1	Dog10	Dog15	Dog16	Dog17	0	og2	Dog22	Dog23	Dog24	Dog29	Dog	3	Dog30	Dog31	Dog8	Dog9
2	ASV_1	0		0	0	0	0	373	1926	0	0		0	0		0 0		0 0
3	ASV_2	0	1	0	0	0	0	0	0	955	0)	0	921		0 0	A.S. 199	0 0
4	ASV_3	242		.0	0	0	0	0	0	0	0		0	0		0 1596	1	0 0
5	ASV_4	205	1	0	0	0	0	0	0	0	0	1	0	0		0 1625	2000	0 0
6	ASV_5	0		0	0	0	0	276	1516	0	0)	0	0		0 0	1	0 0
7	ASV_6	0	1	0	0	0	0	0	0	805	0)	0	944		0 0	1	0 0
8	ASV_7	0		0	0	0	0	0	0	0	1747		0	0		0 0		0 0
9	ASV_8	223		0	0	0	0	0	0	0	0	1	0	0		0 1523		0 0
10	ASV_9	0		0	0	0	0	283	1453	0	0)	0	0		0 0	1.00	0 0
11	ASV_10	0		0	0	0	0	277	1459	0	0	1	0	0		0 0	1	0 0
12	ASV_11	195		0	0	0	0	0	0	0	0	1	0	0		0 1536	2	0 0
13	ASV_12	0	1.000	0	0	0	0	322	1366	0	0	1	0	0		0 0		0 0
14	ASV_13	184		0	0	0	0	0	0	0	0)	0	0		0 1479	1	0 0
15	ASV_14	0	1	0	0	0	0	0	0	806	0)	0	857		0 0	1 7	0 0
16	ASV_15	170		0	0	0	0	0	0	0	0	1	0	0		0 1480	1	0 0
17	ASV_16	0		0	0	0	0	0	0	0	1645	1	0	0		0 0	1	0 0
18	ASV_17	0		0	0	0	0	270	1369	0	0)	0	0		0 0	1	0 0
19	ASV_18	220		0	0	0	0	0	0	0	0	1	0	0		0 1373	1. 2. 1.	0 0
20	ASV_19	0		0	0	0	0	0	0	772	0)	0	798		0 0		0 0
21	ASV_20	174		0	0	0	0	0	0	0	0	1	0	0		0 1376	1	0 0
22	ASV_21	0	1	0	0	0	0	0	0	0	1524	1	0	0		0 0	(0 0
23	ASV_22	0	1	0	0	0	0	0	0	743	0	1	0	720		0 0	1	0 0
24	ASV_23	188	-	0	0	0	0	0	0	0	0	1	0	0		0 1254	1	0 0
25	ASV_24	179		0	0	0	0	0	0	0	0	1	0	0		0 1260	1	0 0
26	ASV_25	154		0	0	0	0	0	0	0	0)	0	0		0 1263	125	0 0
27	ASV_26	167		0	0	0	0	0	0	0	0)	0	0		0 1238	1.1	0 0
28	ASV 27	0		0	0	0	0	0	0	689	0	1	0	716		0 0		0 0

16SrRNA Intermediate Bioinformatics Online Course:

Int_BT_2019 Imane Allali

Alignment

library(DECIPHER)

Tools for curating, analyzing, and manipulating biological sequences.

seqs <- getSequences(seqtab.nochim)
names(seqs) <- seqs # This propagates to the tip labels of the tree
alignment <- AlignSeqs(DNAStringSet(seqs), anchor=NA)</pre>

Construct Phylogenetic Tree

library(phangorn)

```
phang.align <- phyDat(as(alignment, "matrix"), type="DNA")
dm <- dist.ml(phang.align)
treeNJ <- NJ(dm) # Note, tip order I= sequence order
fit = pml(treeNJ, data=phang.align)</pre>
```

It constructs a neighbor-joining tree.

- 1. Change sequence alignment output into phyDat structure.
- 2. Create distance matrix using **dist.ml**.
- 3. Perform neighbor joining.
- 4. Perform internal maximum likelihood.

Construct Phylogenetic Tree

```
fitGTR <- update(fit, k=4, inv=0.2)
fitGTR <- optim.pml(fitGTR, model="GTR", optInv=TRUE, optGamma=TRUE,
rearrangement = "stochastic", control = pml.control(trace = 0))</pre>
```

It fits a GTR+G+I (Generalized time-reversible with Gamma rate variation) maximum likelihood tree using the neighbor-joining tree as a starting point.

saveRDS(fitGTR, "phangorn.tree.RDS")

16SrRNA Intermediate Bioinformatics Online Course

16S analysis pipeline Taxonomic classification and alignment using the dada2 pipeline Practical

The practical is available here: <u>https://iallali.github.io/DADA2_pipeline/</u> <u>16SrRNA_DADA2_pipeline.html</u>

5. Merge the Paired Reads

In this step, we merge the forward and reverse reads to obtain the full sequences. merge.reads <- mergePairs(dadaF, filt.dataF, dadaR, filt.dataR, verbose=TRUE) ## 76306 paired-reads (in 1153 unique pairings) successfully merged out of 82378 (in 2526 pairings) input. ## 54948 paired-reads (in 720 unique pairings) successfully merged out of 60139 (in 1811 pairings) input. ## 83013 paired-reads (in 843 unique pairings) successfully merged out of 89310 (in 2175 pairings) input. ## 74533 paired-reads (in 1093 unique pairings) successfully merged out of 81135 (in 2674 pairings) input. ## 67364 paired-reads (in 855 unique pairings) successfully merged out of 71053 (in 1743 pairings) input. ## 69262 paired-reads (in 1194 unique pairings) successfully merged out of 76778 (in 2891 pairings) input. ## 97401 paired-reads (in 954 unique pairings) successfully merged out of 106466 (in 2867 pairings) input. ## 129237 paired-reads (in 1632 unique pairings) successfully merged out of 146610 (in 5263 pairings) input. ## 111558 paired-reads (in 1143 unique pairings) successfully merged out of 120597 (in 3110 pairings) input. ## 85319 paired-reads (in 839 unique pairings) successfully merged out of 92957 (in 2348 pairings) input. ## 68550 paired-reads (in 915 unique pairings) successfully merged out of 74010 (in 2198 pairings) input. ## 92870 paired-reads (in 1266 unique pairings) successfully merged out of 107043 (in 4252 pairings) input. ## 101935 paired-reads (in 981 unique pairings) successfully merged out of 108579 (in 2495 pairings) input.

