
1

HOWTO: ADVANCED GUIDE FOR DOCKER
A hands-on step-by-step advanced guide to Docker essentials.

Background
This guide is produced by the Computing & Infrastructure working group under the Pipelines and
Computing work package. It is intended to serve as an advanced supplementary guide to the basic
guide for seasoned system admins across the H3ABioNet and its collaborating partners. The guide has
been designed to complement the basic guide for experienced sys admins effective as an almost self-
sufficient walkthrough of major aspects; networking, storage, jupyter notebooks and security
considerations.

Version Amendment History
Version Date Reason for change/Remarks
1.0 April 2021 Creation

 Document Control Box
 Procedure title: Docker – HowTo Advanced Guide
 Date approved: May 2021 ??
 Approving body: PC Work Package & Management Committee
 Version: 1.0
 Previous review
dates:

 Next review date:
 Related information:

 Procedure owner: Computing Infrastructure Project Team

Project Members
Last Name First Name Institution Country
Ghanmi Nidhal Tunisia
Lukyamuzi Edward Uganda Virus Research Institute Uganda
Maslamoney Suresh Computational Biology Division,

University of Cape Town
South Africa

Kimbowa Timothy Uganda Virus Research Institute Uganda

2

Table of contents

1.0 Docker Networking 3

1.1 Using OVS bridge for Docker networking 3

1.2 Weave Networking for Docker 4

2.0 Docker Volumes 4

2.1 Volumes from Docker Image 4

2.2 Volumes from Another Container 5

3.0 Docker security 6

3.1 Host Configuration 6

3.1.1 General Configuration 6

3.1.2 Linux Hosts Specific Configuration 6

3.2 Docker Daemon Configuration 7

3.3 Docker Daemon Configuration Files 8

3.4 Container Runtime 9

3.5 Container Images and Build file 11

3.6 Docker Security Operations 12

3.7 Docker Swarm Configuration 13

4.0 Linking Docker Containers 14

4.1 Docker Link Flag 14

4.2 Docker Compose 14

5.0 Swarmkit 15

5.1 Configure Swarm Cluster 15

6.0 Jupyter notebook on Docker 17

6.1 Numpy 17

6.2 Tensorflow 17

3

1.0 Docker Networking

1.1 Using OVS bridge for Docker networking
OVS bridges or Open vSwitch bridges are used as an alternative to the native bridges in linux. It
supports most features which are in a physical switch while also supporting multiple vLANs on a
single bridge. It is widely used in Docker networking because it proves to be useful for multiple host
networking and provides more secure communication compared to native bridges. Let us now
create, add and configure a new OVS bridge to get docker containers on different networks to
connect to each other

Install OVS

 $ sudo apt-get install openvswitch-switch

Install ovs-docker utility

 $ cd /usr/bin
 $ wget
https://raw.githubusercontent.com/openvswitch/ovs/master/utilities/ovs-docker
 $ chmod a+rwx ovs-docker

Create an OVS bridge

Here we will be adding a new OVS bridge and configuring it, so that we can get the containers
connected on the different network.

 $ ovs-vsctl add-br ovs-br1
 $ ifconfig ovs-br1 10.0.0.1 netmask 255.0.0.0 up

Add a port from OVS bridge to the Docker Container

1. Create two ubuntu Docker Containers

 $ docker run -i -t --name container1 ubuntu /bin/bash
 $ docker run -i -t --name container2 ubuntu /bin/bash

2. Connect the container to OVS bridge

 $ ovs-docker add-port ovs-br1 eth1 container1 --ipaddress=10.0.0.2/8
 $ ovs-docker add-port ovs-br1 eth1 container2 --ipaddress=10.0.0.3/8

3. Test the connection between two containers connected via OVS bridge using Ping command

Extra configuration

If the containers are required to be connected to internet then a port is required to be added to the
ethernet bridge of host which can be configured as follows. Please add an extra bridge eth1 so that
we don’t affect the present state of the host.

 $ ovs-vsctl add-port ovs-br1 eth1

4

1.2 Weave Networking for Docker
Weave creates a virtual network that enables users to connect docker containers on different host
and enable their auto-discovery

Install Weave

 $ sudo wget -O /usr/local/bin/weave \
 https://github.com/weaveworks/weave/releases/download/latest_release/weave
 $ sudo chmod a+x /usr/local/bin/weave

Launch weave containers: internally pull weave router container and run it

 $ weave launch
Start two application containers on weave network

 $ C=$(weave run 10.10.1.1/24 -i -t ubuntu)
 $ C12=$(weave run 10.10.1.2/24 -i -t ubuntu)
C and C12 hold the containerId of the containers created

weave run command will internally run docker run -d command in order to set the ip address of weave
network and start the ubuntu containers. Test the connection between two containers connected via
weave network by using the ping command

 $ docker attach $C
 $ ping 10.10.1.2 -c 4

2.0 Docker Volumes

2.1 Volumes from Docker Image

Docker Image with Volume specified in Dockerfile

Let’s look at: How to add a file as a volume using Dockerfile format, Create an Image from the
Dockerfile and Use the Image to create a container and check if the file exists.

Create a Dockerfile in a directory. Make sure log1 exists in the same directory. We are going to mount
log1 as /h3abionet1/log and mount /h3abionet1 as a volume.

 FROM ubuntu:20.04
 ADD log1 /h3abionet1/log
 VOLUME /h3abionet1
 CMD /bin/sh

Build the image test/volume-by-dockerfile

 docker build -t test/volume-by-dockerfile .

Create a container from the image test/volume-by-dockerfile

 docker run -it test/volume-by-dockerfile

5

Check if the volume /h3abionet1 is mounted using ls command

 # ls
bin boot dev etc home lib .. sbin srv sys tmp h3abionet1 usr var
 # ls /h3abionet1
log

Docker Container with volume from Command Line and Image

Let’s use command line to mount a host directory into a container created from an image

Create a local directory h3abionet2 and two files log1 and log2 in that directory.

 $ sudo mkdir -p /h3abionet2
 [sudo] password for ubuntu:
 $ sudo touch /h3abionet2/log1
 $ sudo touch /h3abionet2/log2

Create a container with a volume h3abionet2 from the image: test/volume-by-dockerfile by specifying
the directory to be mounted on the command line with a flag -v.

 $ docker run -it -v /h3abionet2:/h3abionet2 test/volume-by-dockerfile

Check that the directory h3abionet2 got mounted in the docker container. Run ls in the container
shell.

 # ls
bin boot dev etc home lib sys tmp h3abionet1 h3abionet2 usr var
 # ls h3abionet2
log1 log2
As you can see above both h3abionet1 and h3abionet2 got mounted as volumes.

Container with ReadOnly Volume

Specify the :ro as shown below to make the volume readonly.

 $ docker run -it -v /h3abionet2:/h3abionet2:ro test/volume-by-dockerfile

Try creating a new file in that volume from the bash shell of the container.

 # touch /h3abionet2/log3
touch: cannot touch '/h3abionet2/log3': Read-only file system

2.2 Volumes from Another Container
Volumes from a container can be bound to another container using --volumes-from <container-
name> flag. Make sure there is host directory with contents /h3abionet1/log

 $ ls /h3abionet1
log

6

Create a Container with a Volume: Create a container with name h3abionet01 from image ubuntu

 $ docker run -it --name h3abionet01 -v /h3abionet1:/h3abionet1 ubuntu
 root@############:/# ls h3abionet1
log

Create Second Container with shared volumes: Create a second container h3abionet02 with volumes
from h3abionet01

 $ docker run -it --name h3abionet02 --volumes-from h3abionet01 ubuntu

Check that the h3abionet1 volume is bound as expected

root@b28ca7033e9d:/# ls
bin boot dev etc home .. h3abionet1 usr var
root@b28ca7033e9d:/# ls h3abionet1
log

3.0 Docker security

Docker Security CIS Benchmark

The section is based on the Centre for Internet Security (CIS) benchmark, CIS DOCKER BENCHMARK
V1.2.0. Here, we will be covering all the important guidelines to run docker containers in secured
environment.

3.1 Host Configuration
This section covers security recommendations that you should follow to prepare the host machine
that you plan to use for executing containerized workloads. Securing the Docker host and following
your infrastructure security best practices would build a solid and secure foundation for executing
containerized workloads.

3.1.1 General Configuration
This section contains general host recommendations for systems running Docker

● Harden container host
● Keep docker version up to date

By staying up to date on Docker updates, vulnerabilities in the Docker software can be mitigated. An
attacker may exploit known vulnerabilities when attempting to attain access or elevate privileges.
Not installing regular Docker updates may leave you with running vulnerable Docker software. It
might lead to elevation privileges, unauthorized access or other security breaches.

 $ docker version

3.1.2 Linux Hosts Specific Configuration
This section contains recommendations that securing Linux Hosts running Docker Containers

● Create separate partition for containers
● Only allow trusted users to control Docker daemon

https://benchmarks.cisecurity.org/downloads/show-single/?file=docker16.100
https://benchmarks.cisecurity.org/downloads/show-single/?file=docker16.100

7

The Docker daemon currently requires ‘root’ privileges. A user added to the ‘docker’ group gives him
full ‘root’ access rights. Hence, only verified users should be added to docker group.

 $ useradd test

 $ usermod -G docker test

 $ docker ps

● Audit Docker daemon
Apart from auditing your regular Linux file system and system calls, audit Docker daemon as well.
Docker daemon runs with ‘root’ privileges. It is thus necessary to audit its activities and usage

 $ apt-get install auditd
Add the audit rules for docker service and audit the docker service

 $ nano /etc/audit/audit.rules
 -w /usr/bin/docker -k docker

 $ service auditd restart

 $ ausearch -k docker

● Audit Docker files and directories

3.2 Docker Daemon Configuration
This section lists the recommendations that alter and secure the behaviour of the Docker daemon.
The settings that are under this section affect ALL container instances. Note: Docker daemon options
can also be controlled using files such as /etc/sysconfig/docker, /etc/default/docker, the systemd unit
file or /etc/docker/daemon.json. Also, note that Docker in daemon mode can be identified as
/usr/bin/dockerd, or having -d or daemon as the argument to docker service.

● Restricted network traffic between containers on the default bridge

By default, unrestricted network traffic is enabled between all containers on the same host. Thus, each
container has the potential of reading all packets across the container network on the same host. This
might lead to unintended and unwanted disclosure of information to other containers. Hence, restrict
the inter container communication by setting the icc flag to false

 $ service docker stop

 $ docker -d --icc=false &

● Set logging level to 'info' .
● Allow Docker to make changes to iptables
● Do not use insecure registries
● Do not use aufs storage driver
● Configure TLS authentication for Docker daemon
● Appropriately configure e the default ulimit
● Enable user namespace support

8

● Confirm default cgroup usage
● Do not change base device size until needed
● Enable authorization for Docker client commands
● Configure centralized and remote logging
● Enable live restore
● Disable Userland Proxy
● Appropriately apply daemon-wide custom seccomp profile
● Do not implement experimental features in production
● Restrict containers from acquiring new privileges

3.3 Docker Daemon Configuration Files
This section covers Docker related files and directory permissions and ownership. Keeping the files
and directories, that may contain sensitive parameters, secure is important for correct and secure
functioning of Docker daemon.

● Verify that the docker.service file ownership is set to root:root
● Verify that docker.service file permissions are appropriately set
● Verify that docker.socket file ownership is set to root:root

If you are using Docker on a machine that uses systemd to manage services, then verify that the
‘docker.service’ file ownership and group-ownership is correctly set to ‘root’. So that when the
account is switched to another user (say, test) he is not able to access the docker daemon as he is
not authorized to do so by root account.

 $ stat -c %U:%G /usr/lib/docker | grep -v root:root
 $ stat -c %U:%G /usr/lib/docker | grep root:root
If the permission is not set to root:root then it can be changed by using the following
command

 $ chown root:root /usr/lib/systemd/system/docker.service
 $ su test
 $ docker ps
Cannot connect to the Docker daemon. Is the docker daemon running on this host?
 test@ubuntu:/etc/init.d$

● Verify that docker.socket file permissions are set to 644 or more restrictive 660
If you are using Docker on a machine that uses systemd to manage services, then verify that the
‘docker.service’ file permissions are correctly set to ‘644’ or more restrictive.

As it can be seen below if we allocate 666 as the permission then the “test” user will be also be
available to access the Docker daemon

 $ ls -l /var/run/docker.sock

 $ chmod 666 /var/run/docker.sock

 $ su test
 test@ubuntu:/etc/init.d$ docker ps

As soon as we change the permission to 660 we will be able to see that the “test” user is not able to
access the docker daemon

 $ chmod 660 /var/run/docker.sock

9

 $ su test
 test@ubuntu:/etc/init.d$ docker ps
Cannot connect to the Docker daemon. Is the docker daemon running on this host?

● Set /etc/docker directory ownership to root:root
● Set /etc/docker directory permissions to 755 or more restrictively
● Verify that registry certificate file ownership is set to root:root
● Ensure that registry certificate file permissions are set to 444 or more restrictively
● Ensure that TLS CA certificate file ownership is set to root:root
● Ensure that TLS CA certificate file permissions are set to 444 or more restrictively
● Verify that Docker server certificate file ownership is set to root:root
● Ensure that the Docker server certificate file permissions are set to 444 or more restrictively
● Ensure that the Docker server certificate key file ownership is set to root:root
● Ensure that the Docker server certificate key file permissions are set to 400
● Verify that the Docker socket file ownership is set to root:docker (
● Ensure that the Docker socket file permissions are set to 660 or more restrictively
● Ensure that the daemon.json file ownership is set to root:root
● Ensure that daemon.json file permissions are set to 644 or more restrictive
● Ensure that the /etc/default/docker file ownership is set to root:root
● Ensure that the /etc/sysconfig/docker file ownership is set to root:root
● Ensure that the /etc/sysconfig/docker file permissions are set to 644 or more restrictively
● Ensure that the /etc/default/docker file permissions are set to 644 or more restrictively

3.4 Container Runtime
There are many security implications associated with the ways that containers are started. Some
runtime parameters can be supplied that have security consequences that could compromise the host
and the containers running on it. It is therefore very important to verify the way in which containers
are started, and which parameters are associated with them. Container runtime configuration should
be reviewed in line with organizational security policy. Various recommendations to assess the
container runtime are as below:

● Ensure that, if applicable, an AppArmor Profile is enabled
● Ensure that, if applicable, SELinux security options are set
● Ensure that Linux kernel capabilities are restricted within containers
● Ensure that privileged containers are not used

Docker supports the addition and removal of capabilities, allowing use of a non-default profile. This
may make Docker more secure through capability removal, or less secure through the addition of
capabilities. It is thus recommended to remove all capabilities except those explicitly required for
your container process.

As seen below when we run the container without the privileged mode, we are unable to change the
Kernel parameters but when we run the container in privileged mode using the -privileged flag it is
able to change the Kernel Parameters easily, which can cause security vulnerability.

 $ docker run -it centos /bin/bash
 [root@########/]# sysctl -w net.ipv4.ip_forward=0
 sysctl: setting key "net.ipv4.ip_forward": Read-only file system

10

 $ docker run --privileged -it centos /bin/bash
 [root@######## /]# sysctl -a | wc -l

 [root@######## /]# sysctl -w net.ipv4.ip_forward=0
 net.ipv4.ip_forward = 0
So, while auditing it should be made sure that all the containers should not have the privileged mode
set to true.

 $ docker ps -q | xargs docker inspect --format '{{ .Id }}: Privileged={{ .HostConfig.Privileged
}}'

● Ensure sensitive host system directories are not mounted on containers
If sensitive directories are mounted in read-write mode, it would be possible to make changes to
files within those sensitive directories. The changes might bring down security implications or
unwarranted changes that could put the Docker host in compromised state.

If /run/systemd, sensitive directory is mounted in the container then we can shut down the host
from the container itself.

 $ docker run -ti -v /run/systemd:/run/systemd centos /bin/bash
 [root@1aca7fe47882 /]# systemctl status docker

 [root@1aca7fe47882 /]# shutdown
It can be audited by using the command below which returns the list of current mapped directories
and whether they are mounted in read-write mode for each container instance;

$ docker ps -q | xargs docker inspect --format '{{ .Id }}: Volumes={{ .Volumes }} VolumesRW={{
.VolumesRW }}

● Ensure sshd is not run within containers
● Ensure privileged ports are not mapped within containers
● Ensure that only needed ports are open on the container
● Ensure that the host's network namespace is not shared
● Ensure that the memory usage for containers is limited
● Ensure that CPU priority is set appropriately on containers
● Ensure that the container's root filesystem is mounted as read only
● Ensure that incoming container traffic is bound to a specific host interface

If you have multiple network interfaces on your host machine, the container can accept connections
on the exposed ports on any network interface. This might not be desired and may not be secured.
Many a times a particular interface is exposed externally and services such as intrusion detection,
intrusion prevention, firewall, load balancing, etc. are run on those interfaces to screen incoming
public traffic. Hence, you should not accept incoming connections on any interface. You should only
allow incoming connections from a particular external interface.

As shown below the machine has two network interfaces and by default if we run a nginx container
it will get binded to localhost (0.0.0.0) that means this container will be accessible from both the IP
address which can result in intrusion attack if any of them are not monitored.

 $ ifconfig

 $ docker run -d -p 4915:80 nginx

 $ docker port <CONTAINER ID>

11

 80/tcp -> 0.0.0.0:4915
In order to restrict this we should bind container to one of the host interface IP address using the “-
p” flag

 $ docker run -d -p <Host IP>:4915:80 nginx

 $ docker port <CONTAINER ID>
 80/tcp -> <Host IP>:4915

● Ensure that the 'on-failure' container restart policy is set to '5'
● Ensure that the host's process namespace is not shared

PID namespace provides separation of processes. The PID Namespace removes the view of the
system processes, and allows process ids to be reused including PID 1. If the host’s PID namespace is
shared with the container, it would basically allow processes within the container to see all the
processes on the host system. This breaks the benefit of process level isolation between the host
and the containers. Someone having access to the container can eventually know all the processes
running on the host system and can even kill the host system processes from within the container.
This can be catastrophic. Hence, do not share the host’s process namespace with the containers.

In this section we can see that if the container gets the pid of the host then it can access all the
system level process of the host and can kill them as well causing potential threat. So, thus while
auditing it should be checked that PID Mode should not be set to host for all the containers.

 $ docker run -it --pid=host ubuntu /bin/bash
 $ ps -ef

 $ docker ps -q | xargs docker inspect --format '{{ .Id }}: PidMode={{ .HostConfig.PidMode }}'
 <CONTAINER ID>: PidMode=host

● Ensure that the host's IPC namespace is not shared
● Ensure that host devices are not directly exposed to containers
● Ensure that the default ulimit is overwritten at runtime if needed
● Ensure mount propagation mode is not set to shared
● Ensure that the host's UTS namespace is not shared
● Ensure the default seccomp profile is not Disabled
● Ensure that docker exec commands are not used with the privileged option
● Ensure that docker exec commands are not used with the user=root option
● Ensure that cgroup usage is confirmed
● Ensure that the container is restricted from acquiring additional privileges
● Ensure that container health is checked at runtime
● Ensure that Docker commands always make use of the latest version of their image
● Ensure that the PIDs cgroup limit is used
● Ensure that Docker's default bridge "docker0" is not used
● Ensure that the host's user namespaces are not shared
● Ensure that the Docker socket is not mounted inside any containers

3.5 Container Images and Build file
Container base images and build files govern the fundamentals of how a container instance from a
particular image would behave. Ensuring that you are using proper base images and appropriate build
files can be very important for building your containerized infrastructure. Below are some of the

12

recommendations that you should follow for container base images and build files to ensure that your
containerized infrastructure is secure.

● Ensure that a user for the container has been created
It is thus highly recommended to ensure that there is a non-root user created for the container and
the container is run using that user.

By default, Centos docker image has user field as blank that means by default container will get root
user during runtime which should be avoided.

 $ docker inspect centos
While building the docker image we can provide the “test” user the less-privileged user in the
Dockerfile as shown below

 $ cd
 $ mkdir test-container
 $ cd test-container/
 $ cat Dockerfile
 FROM centos:latest
 RUN useradd test
 USER test

 root@ubuntu:~/test-container# docker build -t h3abionet .

 $ docker images | grep h3abionet
When we start the docker container we can see that it gets “test” user and docker inspect command
also shows the default user as “test”

 $ docker run -it h3abionet /bin/bash
 [test@######### /]$ whoami
 test

 $ docker inspect h3abionet

● Ensure that containers use only trusted base images
● Ensure that unnecessary packages are not installed in the container
● Ensure images are scanned and rebuilt to include security patches
● Ensure Content trust for Docker is Enabled
● Ensure that HEALTHCHECK instructions have been added to container images
● Ensure update instructions are not use alone in the Dockerfile
● Ensure setuid and setgid permissions are removed
● Ensure that COPY is used instead of ADD in Dockerfiles
● Ensure secrets are not stored in Dockerfiles
● Ensure only verified packages are are installed

3.6 Docker Security Operations
This section covers some of the operational security aspects for Docker deployments. These are best
practices that should be followed. Most of the recommendations here are just reminders that
organizations should extend their current security best practices and policies to include containers.

13

● Avoid Container Sprawl
The flexibility of containers makes it easy to run multiple instances of applications and indirectly
leads to Docker images that exist at varying security patch levels. It also means that you are
consuming host resources that otherwise could have been used for running ‘useful’ containers.
Having more than just the manageable number of containers on a host makes the situation
vulnerable to mishandling, misconfiguration and fragmentation. Thus, avoid container sprawl and
keep the number of containers on a host to a manageable total.

 $ docker info
Few containers can be seen in the docker info command but there are no running containers, the
rest containers can be listed using docker ps which are not in running state but occupying space on
the host and can cause container sprawl.

 $ docker ps -a
It is always advisable to run the docker container with “rm” option so that when you exit the
container it gets removed from the host as well

 $ docker run --rm=true -it h3abionet

 $ docker ps -a
In order to remove all the non-running containers from the host following command can be used

 $ docker rm `docker ps --no-trunc -aq`

● Avoid image sprawl

3.7 Docker Swarm Configuration
This section lists the recommendations that alter and secure the behaviour of the Docker Swarm. If
you are not using Docker Swarm, then the recommendations in this section do not apply

● Ensure swarm mode is not Enabled, if not needed
● Ensure that the minimum number of manager nodes have been created in a swarm
● Ensure that swarm services are bound to a specific host interface
● Ensure that all Docker swarm overlay networks are encrypted
● Ensure that Docker's secret management commands are used for managing secrets in a

swarm cluster
● Ensure that swarm manager is run in auto-lock mode
● Ensure that the swarm manager auto-lock key is rotated periodically
● Ensure that node certificates are rotated as appropriate
● Ensure that CA certificates are rotated as appropriate
● Ensure that management plane traffic is separated from data plane traffic

14

4.0 Linking Docker Containers

4.1 Docker Link Flag
In order to connect together multiple docker containers or services running inside docker container,
‘--link’ flag can be used in order to securely connect and provide a channel to transfer information
from one container to another. Let’s use a simple application of using a Wordpress container linked
to MySQL container.

Pull the latest MySql container

 $ docker pull mysql:latest

Run MySql Container in detach mode

 $ docker run --name mysql-container -e MYSQL_ROOT_PASSWORD=wordpress -d mysql
 89c8554d736862ad5dbb8de5a16e338069ba46f3d7bbda9b8bf491813c842532
Let’s run this database container with name “mysql-container” and set root password for MySQL
container.

Pull Wordpress docker container

In the new terminal, pull the official wordpress container

 $ docker pull wordpress:latest

Run the wordpress container linking it to MySQL Container

 $ docker run -e WORDPRESS_DB_PASSWORD=password --name wordpress-container --link
mysql-container:mysql -p 8080:80 -d wordpress
As, we have linked both the containers; now wordpress container is accessible from browser using the
address http://localhost:8080 and setup of wordpress can be done easily.

4.2 Docker Compose
Let’s run the same previous application of wordpress and MySQL linking in this tutorial but with Docker
compose wh ich is a tool use to define and run complex linked applications with docker. With
docker compose we can define the entire multi-container application in single file and then the
application can be spinned up using one command.

Create a new project folder

 $ mkdir dockercompose
 $ cd dockercompose
Create Docker compose file

Create docker-compose.yml with preferred editor having the following contents

web:
 image: wordpress
 links:
 - mysql
 environment:
 - WORDPRESS_DB_PASSWORD=sample
 ports:

http://localhost:8080/

15

 - "127.0.0.3:8080:80"
mysql:
image: mysql:latest
environment:
 - MYSQL_ROOT_PASSWORD=sample
 - MYSQL_DATABASE=wordpress
Get the linked containers up

 $ docker-compose up
 Creating dockercompose_mysql...
 Creating dockercompose_web...
 Attaching to dockercompose_mysql, dockercompose_web
 mysql | Initializing database

Visit the IP address http://127.0.0.3:8080 to see the setup page of the newly created linked wordpress
container.

5.0 Swarmkit

First let’s look at the overall architecture of Swarmkit, a distributed resource manager. This can be
bundled to run Docker tasks or other types of Tasks.

Main Components of Swarmkit

Swarmkit is composed of two types of Nodes:

1. Managers: Responsible for assigning tasks to workers
2. Workers: Place where actual tasks run

5.1 Configure Swarm Cluster

Configure Docker Swarm to create Docker Cluster with multiple Docker nodes.
There are 2 roles on Swarm Cluster: Manager and Worker nodes. Here, we configure Swarm Cluster
with 3 Docker nodes illustrated as follows.

 --------+---------------------------+----------------------+---------
 | | |
 eth0 |10.0.0.51 eth0|10.0.0.52 eth0|10.0.0.53
 +-------+-----------+ +-----------+----------+ +-------+---------+

[node01] [node02] [node03]
Manager Worker Worker

 +-------------------+ +----------------------+ +-----------------+

1) Install and run Docker service on all nodes

2) Configure Swarm Cluster on Manager Node

 $ docker swarm init

http://127.0.0.3:8080/

16

3) Join in Swarm Cluster on all Worker Nodes

 $ docker swarm join \
 --token <###> 10.0.0.51:2377

4) Verify that worker nodes successfully joined cluster

 $ docker node ls

5) Next, configure services that the Swarm Cluster provides

Create the same container image on all Nodes for the service first.
For example, let's create a Container image which provides http service on all Nodes

 $ root@node01:~# vi Dockerfile
FROM ubuntu:20.04

RUN apt-get update
RUN apt-get -y install apache2
RUN echo "node01" > /var/www/html/index.html

EXPOSE 80
CMD ["/usr/sbin/apachectl", "-D", "FOREGROUND"]

 root@node01:~# docker build -t apache2_server:latest ./docker node ls

6) Configure service on Manager Node

Access the Manager node's Hostname or IP address to verify it works normally. Note that requests to
worker nodes are load-balanced with round-robin

Create a service with 2 replicas

 $ docker service create --name swarm_cluster --replicas=2 -p 80:80 apache2_server:latest

Show service list

 $ docker service ls

Inspect the service

 $ docker service inspect swarm_cluster --pretty

Show service state

 $ docker service ps swarm_cluster

Verify it works normally

 $ curl http://node01

http://node01/

17

 $ curl http://node01
 $ curl http://node01

7) If you'd like to change the number of replicas, configure as follows.

 $ docker service scale swarm_cluster=3

6.0 Jupyter notebook on Docker

Machine Learning and Data Analytics are becoming quite popular for main stream data processing

6.1 Numpy
In this section we learn how to run numpy programs on Jupyter which is served from inside a docker
container.

Setup Docker

Let’s assume you have the latest version of docker running on your computer.

Download Run Docker Jupyter Image

Run the jupyter/scipy-notebook in the detached mode. Please note the container port 8888 is
mapped to host port of 8888.

 docker run -d -p 8888:8888 jupyter/scipy-notebook
You can inspect the container running and get the container id

 docker ps -a

Get the Security token

Since the jupyter notebooks from this image have a security token associated, execute the following
command to get the token

 docker exec <CONTAINER ID> jupyter notebook list
Output of the command above will give the URL with security token

Access Jupyter Notebook

Direct the Host browser at the URL generated

6.2 Tensorflow
In this section we learn how to run Tensorflow programs on Jupyter which is served from inside a
docker container.

Setup Docker

We assume you have the latest version of docker running on your computer.

http://node01/
http://node01/

18

Download Run Docker Jupyter Image

Run the jupyter/scipy-notebook in the detached mode. Please note the container port 8888 is
mapped to host port of 8888.

 docker run -d -p 8888:8888 jupyter/tensorflow-notebook
Output of the above command will show the CONTAINER_ID of the container

Let’s inspect the container running and get the container id

 docker ps -a

Get the Security token

Since the jupyter notebooks from this image have a security token associated, execute the following
command to get the token

 docker exec <CONTAINER ID> jupyter notebook list
Output of the command above will give the URL with security token

Access Jupyter Notebook

Direct the Host browser at the URL generated above

	1.0 Docker Networking
	1.1 Using OVS bridge for Docker networking
	1.2 Weave Networking for Docker

	2.0 Docker Volumes
	2.1 Volumes from Docker Image
	2.2 Volumes from Another Container

	3.0 Docker security
	3.1 Host Configuration
	3.1.1 General Configuration
	3.1.2 Linux Hosts Specific Configuration

	3.2 Docker Daemon Configuration
	3.3 Docker Daemon Configuration Files
	3.4 Container Runtime
	3.5 Container Images and Build file
	3.6 Docker Security Operations
	3.7 Docker Swarm Configuration

	4.0 Linking Docker Containers
	4.1 Docker Link Flag
	4.2 Docker Compose

	5.0 Swarmkit
	5.1 Configure Swarm Cluster

	6.0 Jupyter notebook on Docker
	6.1 Numpy
	6.2 Tensorflow

